Ознакомьтесь с Условиями пребывания на сайте Форнит Игнорирование означет безусловное согласие. СОГЛАСЕН
ВХОД
 
 

Короткий адрес страницы: fornit.ru/5169
или fornit.ru/ax1-8-287

Особенности функции гиппокампа

Использовано в предметной области:
Системная нейрофизиология (nan)
  • раздел: Сохранение памяти (nan)


  • Чтобы понять, как работает то или иное сложное устройство, надо иной раз его сломать. А если это устройство — мозг? Пусть всего-то лабораторной мыши. Жалко зверька. Но теперь экспериментаторы придумали революционную технику: научились произвольно включать и выключать заданную нейронную "схему" внутри живого мозга.

    Учёные давно знают, что ключевым "устройством", отвечающим за запись новых воспоминаний (при обучении или получении новых впечатлений) в долговременную память, является небольшая часть мозга, называемая гиппокампом.

    С ним уже не раз проводили различные эксперименты, проясняющие, как гиппокамп перекодирует информацию. И хотя он устроен куда проще, чем весь мозг в целом, даже этот небольшой "узел", нечто вроде "шины данных" в компьютере, всё ещё скрывает в себе массу тайн.

    Ранее мы рассказывали, о проекте построения электронного гиппокампа. В той работе учёные снимали сигналы с нейронов и пытались вычислить, что именно делает гиппокамп со входящими импульсами и какие при этом формирует импульсы на выходе. А другая группа однажды даже построила комбинированную схему — чип и гиппокамп крысы, всё с теми же исследовательскими целями.

     

    Зелёным показан район гиппокампа мыши, в котором техника DICE-K заблокировала передачу нервных сигналов (фото Toshi Nakashiba, MIT).



    Однако такая стратегия анализа "чёрного ящика" — не самый продуктивный путь. Потому множество исследователей пытается тем или иным образом повлиять на гиппокамп подопытных животных, чтобы по изменениям в работе их памяти и в интеллекте понять — что происходит внутри.

    Среди этих экспериментаторов — Сусуму Тонегава (Susumu Tonegawa) и его коллеги из института обучения и памяти Пикауэра (Picower Institute for Learning and Memory) Массачусетского технологического института (MIT).

    Тонегава занимается изучением механизмов памяти очень давно. Это он в 2004 году нашёл "ферментный ключ" к долговременной памяти, а в 2007-м отыскал в мозге источник дежавю.

    Теперь Сусуму совершил прорыв в изучении гиппокампа. Впервые учёные смогли произвольно выключить и включить строго определённую нейронную "схему" в мозге живого существа (мыши) и проследить эффект от такого переключения. Более того, экспериментаторы сумели уже в гиппокампе выключить и включить определённую его часть.

    Переключатель исследователи использовали оригинальный. В лаборатории Тонегавы был изобретён новый метод блокирования нейронных связей: "Доксициклин-ингибированное подавление клеточного экзоцитоза" (то есть выделения медиаторов) — doxycycline-inhibited circuit exocytosis-knockdown (DICE-K).

    Кстати, химический метод воздействия на гиппокамп (только с иным веществом) применяла другая научная группа, которая некогда стёрла воспоминания у крыс.

     

    Схема нейронных связей гиппокампа мыши. Правой стрелкой показан сигнал, идущий от энторинальной коры (иллюстрация Toshi Nakashiba, MIT).



    Гиппокамп состоит из нескольких участков (CA1, CA3, зубчатая извилина), напоминают американские экспериментаторы. Они соединены между собой несколькими нейронными "схемами". Одну из них называют трёхсинаптический путь (tri-synaptic pathway — TSP). Он переносит информацию по маршруту: энторинальная кора (ЭК) — зубчатая извилина — CA3 — CA1 — ЭК. Моносинаптическая же "дорожка" (MSP), работающая параллельно, куда короче: ЭК — CA1 — ЭК.

    Применив DICE-K, исследователи с удивлением обнаружили, что мыши, у которых основной путь обработки информации (TSP) был выключен, всё ещё могли учиться ориентироваться лабиринте. Короткого пути MSP было достаточно для такой работы.

    Однако запоминание пути в лабиринте, говорят авторы опыта, это задача, которая выполняется медленно, за многие попытки прохождения. А вот когда мышей направляли на иные испытания, в условиях, которые требовали быстрого обучения и формирования памяти с "первой попытки", исследователи обнаружили, что животные с блокированным TSP не могут выполнять эти задачи.

    О своих опытах Тонегава и его коллеги отчитались в своей статье в Science.

    Таким образом, TSP оказался необходим для быстрого закрепления информации в новых условиях. "Этот вид обучения есть результат работы самых сложных форм памяти, тех, что делают животных более умными, и, тех, что ухудшаются с возрастом", — объяснил Сусуму.

    Учёный продолжил: "Наши данные убедительно свидетельствуют о том, что TSP в гиппокампе играет ключевую роль в быстром формировании памяти, когда в повседневной жизни возникают новые события и эпизоды. Наши результаты показывают, что снижение этих способностей, как, например, при нейродегенеративных заболеваниях и старении здоровых людей, может быть обусловлено, по крайней мере, частично, "отказами" в этой схеме".

    Получается, что, поняв механизм естественных сбоев в "микросхеме" TSP, биологи и медики могут научиться лечить ряд заболеваний. За это мыши и страдают. Теперь не так сильно.

     



    Источник: Выключатель нейронов открыл биологам тайну памяти
    Дата создания: 11.08.2011
    Последнее редактирование: 26.08.2014

    Относится к аксиоматике: Системная нейрофизиология.

    Оценить cтатью >>

    Другие страницы раздела "Сохранение памяти":
  • Длительность следовых процессов
  • Фиксация памяти
  • Клеточная организация памяти
  • Забывание
  • Процессы при сохранении памяти
  • Забывание 2
  • Значимость и память
  • Консолидация
  • Эрик Кандел
  • Роль реверберации
  • Механизм фиксации памяти
  • Принципы организации памяти мозга
  • Можно ли забыть незабываемое?
  • Дрозофилы обладают пространственной памятью
  • Концепция временной организации памяти
  • Время удержания кратковременной памяти до ее гашения
  • Принимая решение, пчелы учитывают свой прошлый опыт и время суток
  • Визуальное наблюдение адаптивного поведения нейронов
  • Отдыхающий мозг формирует долговременную память
  • Как страх закрепляет воспоминания
  • Роль активации системы отношения в формировании ложных воспоминаний
  • Искусственный гиппокамп
  • Нейроны получают эпигенетические метки при формировании ассоциативной памяти
  • Нейрогенез в гиппокампе для поддержки новых образов
  • Системы головного мозга и память
  • Во время переобучения долговременная память не формируется заново, а модифицируется
  • Запоминание без гиппокампа (без осознания)
  • При воспоминании память всегда модифицируется
  • Бессознательные воспоминания оказались полезны для усвоения новой информации
  • Образование цепочки мыслительной памяти
  • ДЛЯ ФОРМИРОВАНИЯ ВОСПОМИНАНИЙ НУЖЕН 10-МИНУТНЫЙ ОТДЫХ
  • В мозгу человека нашли аналог кэш-памяти
  • Последовательность формирования элементов субъективных моделей понимания
  • Зеркальные нейроны и модели понимания
  • Извлечение эпизодической памяти, как и запоминание, использует структуры гиппокампа
  • Первые осознанные воспоминания
  • Искусственное воспроизведение эпизодической памяти
  • Эпизодическая память у крыс
  • Контекстом эпизодический памяти является эмоциональное состояние
  • Виды осознаваемой памяти: Семантическая и Эпизодическая
  • Мозг постепенно уменьшает число энграммных нейронов воспоминания
  • Запоминание правил
  • Специальные нейроны отмечают границы эпизодов в потоке жизненного опыта
  • Перемены настроения помогают разделить непрерывную цепь событий на отдельные эпизоды
  • Предсказания эпизодической памяти

    Чтобы оставить комментарии нужно авторизоваться:
    Авторизация пользователя