НАУКА И ИЗМЕНЕНИЕ
(ПРЕДИСЛОВИЕ)
Современная западная цивилизация достигла необычайных высот в искусстве расчленения целого на части, а именно в разложении на мельчайшие компоненты. Мы изрядно преуспели в этом искусстве, преуспели настолько, что нередко забываем собрать разъятые части в то единое целое, которое они некогда составляли.
Особенно изощренные формы искусство разложения целого на составные части приняло в науке. Мы имеем обыкновение не только вдребезги разбивать любую проблему на осколки размером в байт* или того меньше, но и нередко вычленяем такой осколок с помощью весьма удобного трюка. Мы произносим: «Ceteris paribus», и это заклинание позволяет нам пренебречь сложными взаимосвязями между интересующей нас проблемой и прочей частью Вселенной.
У Ильи Пригожина, удостоенного в 1977 г. Нобелевской премии за работы по термодинамике неравновесных систем, подход к решению научных проблем, основанный только на расчленении целого на части, всегда вызывал неудовлетворенность. Лучшие годы своей жизни Пригожин посвятил воссозданию целого из составных частей, будь то биология и физика, необходимость и случайность, естественные и гуманитарные науки.
Илья Романович Пригожин родился 25 января 1917 г. в Москве. С десятилетнего возраста живет в Бельгии.
Невысокого роста, с седой головой и четко высеченными чертами лица, он, подобно лазерному лучу, представляет собой сгусток энергии. Живо интересуясь археологией и изобразительным искусством, Пригожин привносит в естественные науки разносторонность и универсальность, свойственные лишь недюжинным умам. Вместе с женой Мариной, по профессии инженером, и сыном Паскалем Пригожин живет в Брюсселе, где возглавляет группу представителей различных наук, занимающихся развитием и применением его идей в столь, казалось бы, далеких областях, как, например, изучение коллективного поведения муравьев, химических реакций в системах с диффузией и диссипативных процессов в квантовой теории поля.
Ежегодно Илья Пригожин проводит несколько месяцев в руководимом им Центре по статистической механике и термодинамике при Техасском университете в г. Остин. Для Пригожина было большой радостью и неожиданностью узнать, что за работы по диссипативным структурам, возникающим в неравновесных системах в результате протекания нелинейных процессов, ему присуждена Нобелевская премия. Книга «Порядок из хаоса» написана Пригожиным га соавторстве с Изабеллой Стенгерс, философом, химиком и историком науки, одно время работавшей в составе Брюссельской группы. Ныне Изабелла Стенгерс живет в Париже и сотрудничает с музеем де ля Биллет.
Книга «Порядок из хаоса» примечательна во многих отношениях. Она спорна и будоражит воображение читателя, изобилует блестящими прозрениями и догадками, подрывающими уверенность в состоятельности наших основополагающих представлений и открывающими новые пути к их осмыслению.
Выход в 1979 г. французского варианта книги Пригожина и Стенгерс под названием «Новый альянс» («La nouvelle alliance») вызвал весьма оживленную дискуссию, в которой приняли участие выдающиеся представители различных областей науки и культуры, в том числе и столь далеких, как энтомология и литературная критика.
Тот факт, что английского варианта книги И. Пригожина и И. Стенгерс, изданной или подготавливаемой к изданию на двенадцати языках, пришлось ждать так долго, красноречиво свидетельствует об оторванности англоязычного мира. Впрочем, столь длительная задержка имеет и свою положительную сторону: в книге «Порядок из хаоса» нашли отражение новейшие идеи Пригожина, в частности его подход ко второму началу термодинамики, которое он сумел увидеть в совершенно ином свете, чем его предшественники.
Все это позволяет считать работу «Порядок из хаоса» не просто еще одной книгой, а своеобразным стимулом, побуждающим нас к критическому пересмотру целей науки, методов и теоретико-познавательных установок - всего научного мировоззрения. Книгу Пригожина и Стенгерс можно рассматривать как символ происходящих в наше время исторических преобразований в науке, игнорировать которые не может ни один просвещенный человек.
Некоторые ученые рисуют картину мира науки как приводимую в действие своей собственной внутренней логикой и развивающуюся по своим собственным законам в полной изоляции от окружающего мира. В этой связи нельзя не заметить, что многие научные гипотезы, теории, метафоры и модели (не говоря уже о решениях, принимаемых учеными всякий раз, когда перед ними встает проблема выбора: стоит ли заняться исследованием той или иной проблемы или предпочтительнее оставить ее без внимания) формируются под влиянием экономических, культурных и политических факторов, действующих за стенами лаборатории.
Я отнюдь не утверждаю, что между экономическим и политическим строем общества и господствующим научным мировоззрением, или «парадигмой», существует тесная параллель. Еще в меньшей степени я склонен считать, как это делают марксисты, науку надстройкой над общественно-экономическим базисом. Вместе с тем было бы неверно рассматривать науку как своего рода независимую переменную. Наука представляет собой открытую систему, которая погружена в общество и связана с ним сетью обратных связей. Наука испытывает
на себе сильнейшее воздействие со стороны окружающей ее внешней среды, и развитие науки, вообще говоря, определяется тем, насколько культура восприимчива к научным идеям.
Возьмем хотя бы совокупность идей и взглядов, сложившихся в XVII и XVIII вв. под общим названием классической науки, или ньютонианства. Приверженцы классической науки рисовали картину мира, в которой любое событие однозначно определяется начальными условиями, задаваемыми (по крайней мере в принципе) абсолютно точно. В таком мире не было места случайности, все детали его были тщательно подогнаны и находились «в зацеплении», подобно шестерням некоей космической машины.
Широкое распространение механистического мировоззрения совпало с расцветом машинной цивилизации. Бог, играющий в кости, был плохо совместим с машинным веком, который с энтузиазмом воспринимал научные теории, изображавшие Вселенную как своего рода гигантский механизм.
Именно механистическое мировоззрение лежит в основе знаменитого изречения Лапласа о том, что существо, способное охватить всю совокупность данных о состоянии Вселенной в любой момент времени, могло бы не только точно предсказать будущее, но и до мельчайших подробностей восстановить прошлое. Представление о простой и однородной механической Вселенной не только оказало решающее воздействие на ход развития науки, но и оставило заметный отпечаток на других областях человеческой деятельности. Оно явно довлело над умами творцов американской конституции, разработавших структуру государственной машины, все звенья которой должны были действовать с безотказностью и точностью часового механизма. Меттерних, настойчиво проводивший в жизнь свой план достижения политического равновесия в Европе, отправляясь в очередной дипломатический вояж, неизменно брал с собой в дорогу сочинения Лапласа. Необычайно быстрое развитие фабричной цивилизации с ее огромными грохочущими машинами, блестящими достижениями инженерной мысли, строительством железных дорог, созданием
новых отраслей промышленности (таких, как сталелитейная, текстильная, автомобильная) - все это, казалось бы, лишь подтверждало правильность представления о Вселенной как о гигантской заводной игрушке.
Однако ныне машинный век горестно оплакивает свой конец, если только столь антропоморфный термин применим к векам (что касается нашего века, то к нему этот термин применим в полной мере). Закат индустриального века с особой наглядностью продемонстрировал ограниченность механистической- модели реальности.
Разумеется, многие слабые стороны механистической модели были обнаружены задолго до нас. Представление о мере как о часовом механизме с планетами, извечно обращающимися по неизменным орбитам, детерминированным поведением любых равновесных систем и действующими на все без исключения объекты универсальными законами, которые могут быть открыты внешним наблюдателем, - такая модель с самого начала подверглась уничтожающей критике.
В начале XIX в. термодинамика поставила под сомнение вневременной характер механистической картины мира. «Если бы мир был гигантской машиной, - провозгласила термодинамика,-то такая машина неизбежно должна была бы остановиться, так как запас полезной энергии рано или поздно был бы исчерпан». Мировые часы не могли идти вечно, и время обретало новый смысл. Вскоре после этого последователи Дарвина выдвинули противоположную идею. По их мнеиию, хотя мировая машина, расходуя энергию и переходя из более организованного в менее организованное состояние, и могла замедлять свой ход и даже останавливаться, тем не менее биологические системы должны развиваться только по восходящей линии, переходя из менее организованного в более организованное состояние.
В начале XX в. Эйнштейну понадобилось поместить наблюдателя внутрь системы. Мировая машина стала выглядеть по-раэному (и со всех практически важных точек зрения действительно различной) в зависимости от того, где находится наблюдатель. Вместе с тем она по-прежнему оставалась детерминистической машиной. Бог еще не приступал к игре в кости. Несколько позднее физики, работавшие в области квантовой механики, и в частности занимавшиеся соотношением неопределениости, предприняли массированное наступление на детерминистическую модель. Они кололи ее острыми копьями, били по ней тяжкими молотами, пытались подорвать динамитом.
И все же, несмотря иа все оговорки, пробелы и недостатки, механистическая парадигма и поныне остается для физиков «точкой отсчета» (о чем необходимо сказать со всей ясностью и определенностью, как это и делают Пригожий и Стеигерс), образуя центральное ядро науки в целом. Оказываемое ею и поныне влияние столь сильно, что подавляющее большинство социальных наук, в особенности экономика, все еще находится в ее власти. Значение книги «Порядок из хаоса» состоит в том, что ее авторы не только находят новые аргументы для критики ньютоновской модели, но и показывают, что претензии ньютонианства на объяснение реальности, - и поныне не утратившие силу, хотя и ставшие значительно более умеренными, - совместимы с гораздо более широкой современной картиной мира, созданной усилиями последующих поколений ученых. Пригожий и Стенгерс показывают, что так называемые «универсальные законы» отнюдь не универсальны, а применимы лишь к локальным областям реальности. Именно к этим областям наука приложила наибольшие усилия.
Суть приводимых Пригожиным и Стенгерс аргументов можно было бы резюмировать следующим образом. Авторы книги «Порядок из хаоса» показывают, что в машинный век традиционная иаука уделяет основное внимание устойчивости, порядку, однородности и равновесию. Она изучает главным образом замкнутые системы и линейные соотношения, в которых малый сигнал на входе вызывает равномерно во всей области определения малый отклик на выходе.
Неудивительно, что при переходе от индустриального общества с характерными для него огромными затратами энергии, капитала и труда к обществу с высокоразвитой технологией, для которого критическими ресурсами являются информация и технологические нововведения, неминуемо возникают новые научные модели мира. Пригожииская парадигма особенно интересна тем, что она акцентирует внимание на аспектах реальности, наиболее характерных для современной стадии ускоренных социальных изменений: разупорядоченности, неустойчивости, разнообразии, неравновесиости, нелинейных соотношениях, в которых малый сигнал па входе может вызвать сколь угодно сильный отклик на выходе, я темпоральности - повышенной чувствительности к ходу времени.
Не исключено, что работы Пригожина и его коллег в рамках так называемой Брюссельской школы знаменуют очередной этап научной революции, поскольку речь идет о начале нового диалога не только с природой, ио и с обществом.
Идеи Брюссельской школы, существенно опирающиеся на работы Пригожина, образуют новую, всеобъемлющую теорию изменения.
В сильно упрощенном виде суть этой теории сводится к следующему. Некоторые части Вселенной действительно могут действовать как механизмы. Таковы замкнутые системы, но они в лучшем случае составляют лишь малую долю физической Вселенной. Большинство же систем, представляющих для нас интерес, открыты - они обмениваются энергией или веществом (можно было бы добавить: и информацией) с окружающей средой. К числу открытых систем, без сомнения, принадлежат биологические и социальные системы, а это означает, что любая попытка понять их в рамках механистической модели заведомо обречена на провал.
Кроме того, открытый характер подавляющего большинства систем во Вселенной наводит на мысль о том, что реальность отнюдь не является ареной, на которой господствует порядок, стабильность и равновесие: главенствующую роль в окружающем нас мире играют неустойчивость и неравновесность.
Если воспользоваться терминологией Пригожина, то можно сказать, что все системы содержат подсистемы, которые непрестанно флуктуируют. Иногда отдельная флуктуация или комбинация флуктуации может стать (в результате положительной обратной связи) настолько сильной, что существовавшая прежде организация не выдерживает и разрушается. В этот переломный момент {который авторы книги называют особой точкой или точкой бифуркации) принципиально невозможно предсказать, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и более высокий уровень упорядоченности
В неорганической химии автокаталитические реакции встречаются редко, но, как показали исследования по молекулярной биологии последних десятилетий, петли положительной обратной связи (вместе с ингибиторной, или отрицательной, обратной связью и более сложными процессами взаимного катализа) составляют самую основу жизни. Именно такие процессы позволяют объяснить, каким образом совершается переход от крохотных комочков ДНК к сложным живым организмам.
Обобщая, мы можем утверждать, что в состояниях, далеких от равновесия, очень слабые возмущения, или флуктуации, могут усиливаться до гигантских волн, разрушающих сложившуюся структуру, а это проливает свет на всевозможные процессы качественного пли резкого (не постепенного, не эволюционного) изменения. Факты, обнаруженные и понятые в результате изучения сильно неравновесных состояний и нелинейных процессов, в сочетании с достаточно сложными системами, наделенными обратными связями, привели к созданию совершенно нового подхода, позволяющего установить связь фундаментальных наук с «периферийными» науками о жизни и, возможно, даже понять некоторые социальные процессы.
(Факты, о которых идет речь, имеют не меньшее, если не большее, значение для социальных, экономических или политических реальностей. Такие слова, как «революция», «экономический кризис», «технологический сдвиг» и «сдвиг парадигмы», приобретают новые оттенки, когда мы начинаем мыслить о соответствующих понятиях в терминах флуктуации, положительных обратных связей, диссипативных структур, бифуркаций и прочих элементов концептуального лексикона школы Пригожина.) Именно такие широкие перспективы открываются перед нами при чтении книги «Порядок из хаоса». Помимо всего сказанного в книге Пригожина и Стенгерс затронута еще более головоломная проблема, возникающая буквально на каждом шагу, - проблема времени.
Пересмотр понятия времени - неотъемлемая составная часть грандиозной революции, происходящей в современной иауке и культуре. Важность проблемы времени делает уместным небольшое отступление, которое мы совершим прежде, чем переходить к оценке роли Пригожина в ее решении.
В качестве примера возьмем историю. Одним из наиболее значительных вкладов в историографию явились предложенные Броделем три временные шкалы. В шкале географического времени длительность событий измеряется в эпохах, или зонах. Гораздо мельче шкала социального времени, используемая при измерении продолжительности событий в экономике, истории отдельных государств и цивилизаций. Еще мельче шкала индивидуального времени - истории событий в жизни того или иного человека.
В социальных науках время, по существу, остается огромным белым пятном. Из антропологии известно, сколь сильно отличаются между собой представления о времени различных культур. В одних культурах время циклично - история состоит из бесконечных повторений одной и той же цепи событий. В других культурах, включая и нашу собственную, время - дорога, проторенная между прошлым и будущим, по которой идут народы и общества. Встречаются и такие культуры, в которых человеческая жизнь считается стационарной во времени: немы приближаемся к будущему, а будущее приближается к нам.
Мне уже доводилось писать о том, что каждое общество питает определенное, характерное лишь для него временное пристрастие - в зависимости от того, в какой мере оно акцентирует свое внимание на прошлом, настоящем или будущем. Одно общество живет прошлым, другое может быть целиком поглощено будущим.
Кроме того, каждая культура и каждая личность имеют обыкновение мыслить в терминах временных горизонтов. Одни из нас сосредоточили все помыслы лишь на том, что происходит в данный момент, сейчас. Например, политических деятелей часто критикуют за то, что они не видят дальше собственного носа. О таких деятелях говорят, что их временной горизонт ограничен датой ближайших выборов. Другие из нас предпочитают строить далекие планы. Столь различные временные горизонты - один из важнейших, хотя и часто упускаемый из виду, источников социальных и экономических трений.
Несмотря на растущее сознание различий в культурных концепциях времени, социальные науки внесли незначительный вклад в создание самосогласованной теории времени. Такая теория могла бы охватить многие дисциплины - от Политики до динамики социальных групп и психологии общения. Оиа могла бы учитывать, например, то, что в книге «Столкновение с будущим» («Future Shock») я назвал предвкушением длительности, - индуцированные нашей культурой предположительные оценки длительности того или иного процесса.
Например, мы довольно рано узнаем, что зубы полагается чистить в течение нескольких минут, а не все утро или что, когда папа уходят на работу, он возвращается часов через восемь и что обед может длиться минуты или часы, но отнюдь не год. (Телевидение с его разбиением программ на получасовые и часовые интервалы тонко формирует наши представления о длительности. Обычно мы не без основания ожидаем, что герой мелодрамы встретит свою возлюбленную, завладеет богатством или выиграет сражение в последние пять минут телепередачи. В США мы интуитивно прогнозируем через определенные промежутки времени перерывы в телевизионных передачах для показа рекламных объявлений.) Наш разум заполнен подобными прогнозами длительности. Разумеется, прогнозы детского разума во многом отличаются от прогнозов разума взрослого человека, полностью адаптировавшегося к социальной среде, и эти различия также являются источником конфликта.
Дети в индустриальном обществе обладают временндй тренированностью: они умеют обращаться с часами и рано научаются различать довольно малые отрезки времени (вспомним хотя бы хорошо знакомую всем ситуацию, когда родители говорят ребенку: «Через три минуты ты должен быть в постели!»). Столь тонко развитое чувство времени нередко отсутствует в аграрном обществе с его замедленными темпами, не требующими столь скрупулезно расписанного по минутам плана на день, как наше вечно спешащее общество.
Понятия, соответствующие социальной и индивидуальной временным шкалам Броделя, не были подвергнуты систематическому анализу в социальных науках. Не предпринималось и сколько-нибудь значительных попыток «состыковать» их с нашими естественнонаучными теориями времени, хотя такие понятия не могут не быть связанными с нашими исходными допущениями о физической (реальности. Последнее замечание вновь возвращает нас к Пригожину, которого понятие времени неудержимо влекло к себе с детских лет. Как-то Пригожин сообщил мне, что еще в бытность свою студентом был поражен вопиющими противоречиями в естественнонаучном подходе к проблеме времени и эти противоречия стали отправным пунктом всей его дальнейшей, деятельности.
В модели мира, построенной Ньютоном и его последователями, время выступало как своего рода придаток. Для создателей ньютоновской картины мира любой момент времени в настоящем, прошлом и будущем был. неотличим от любого другого момента времени. Планеты могли обращаться вокруг Солнца (часы или какой-нибудь другой простой механизм-идти) как вперед, так и назад по времени, ничего не изменяя в самих основах ньютоновской системы. Именно поэтому в научных кругах за временем в ньютоновской системе закрепилось название обратимого времени.
В XIX в. центр интересов физиков переместился с динамики на термодинамику. После того как было сформулировано второе начало термодинамики, всеобщее внимание 'Неожиданно оказалось прикованным к понятию времени. Дело в том, что согласно второму началу термодинамики запас энергии во Вселенной иссякает, а коль скоро мировая машина сбавляет обороты, неотвратимо приближаясь к тепловой смерти, ни одни момент времени не тождествен предшествующему. Ход. событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии. События в целом невоспроизводимы, а это означает, что время обладает направленностью, или, если воспользоваться выражением Эддингтона, существует стрела времени. Вселенная стареет, а коль скоро это так, время как бы представляет собой улицу с односторонний движением. Оно утрачивает обратимость и становится необратимым.
Не вдаваясь в детали, можно утверждать, что возникновение термодинамики привело естествознание к глубокому расколу в связи с проблемой времени. Более того, даже те, кто считал время необратимым, вскоре разделились на два лагеря. Если запас энергии в системе тает, рассуждали они, то способность системы поддерживать организованные структуры ослабевает, отсюда высокоорганизованные структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. Не следует забывать, однако, что именно организация наделяет систему присущим ей разнообразием. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Следовательно, второе начало термодинамики предсказывает все более однородное будущее (прогноз с чисто человеческой точки зрения весьма пессимистический).
Обратимся теперь к проблемам, поднятым Дарвином и его последователями. Считалось, что эволюция отнюдь не приводит к понижению уровня организации и -обеднению разнообразия форм. Наоборот, эволюция развивается в противоположном направлении: от простого к сложному, от низших форм жизни к высшим, от недифференцированных структур к дифференцированным. С человеческой точки зрения, такой прогноз весьма оптимистичен. Старея, Вселенная обретает все более тонкую организацию. Со временем уровень организации Вселенной неуклонно повышается.
В указанном выше смысле взгляды приверженцев второго начала термодинамики и дарвинистов по поводу временных изменений во Вселенной уместно охарактеризовать как противоречие в противоречии.
Стремление разрешить эти старые парадоксы приводит Пригожина и Стенгерс к следующим вопросам: «какова специфическая структура динамических систем, позволяющая им «отличать прошлое от будущего»? Каков необходимый для такого различения минимальный уровень сложности»?
Ответ, к которому приходят Пригожин и Стенгерс, сводится к следующему. Стрела времени проявляет себя лишь в сочетании со случайностью. Только в том случае, когда система ведет себя достаточно случайным образом, в ее описании возникает различие между прошлым и будущим и, следовательно, необратимость.
В классической, или механистической, науке исходным рубежом событий служат начальные условия. Атомы или частицы движутся по мировым линиям, или траекториям. Задав начальные условия, мы можем выпустить из исходной мировой точки траекторию как назад по времени - в прошлое, так и вперед по времени - в будущее. С совершенно иной ситуацией мы сталкиваемся при рассмотрении некоторых химических реакций, например в случае, когда две жидкости, слитые в один сосуд, диффундируют до тех пор, пока смесь не станет однородной, или гомогенной. Обратная диффузия, которая приводила к разделению смеси на исходные компоненты, никогда не наблюдается. В любой момент времени смесь отличается от той, которая была в сосуде в предыдущий момент и будет в следующий. Весь процесс ориентирован во времени.
В классической науке (по крайней мере на ранних этапах ее развития) такие направленные во времени процессы считались аномалиями, курьезами, обязанными своим происхождением выбору весьма маловероятных начальных условий.
Пригожин и Стенгерс приводят убедительные аргументы, показывающие, что такого рода нестационарные односторонне направленные во времени процессы отнюдь не являются своего рода аберрациями, или отклонениями, от мира с обратимым временем. Гораздо ближе к истине обратное утверждение: редким явлением,, или аберрацией с несравненно большим основанием, надлежит считать обратимое время, связанное с замкнутыми системами (если таковые существуют в действительности) .
Более того, необратимые процессы являются источником порядка (отсюда и название книги Пригожина и Стенгерс - «Порядок из хаоса»). Тесно связанные с открытостью системы и случайностью, необратимые процессы порождают высокие уровни организации, например диссипативные структуры.
Именно поэтому одним из лейтмотивов предлагаемой вниманию читателя книги служит новая, весьма необычная интерпретация второго начала термодинамики, предложенная авторами. По мнению Пригожина и Стенгерс, энтропия - не просто безостановочное соскальзывание системы к состоянию, лишенному какой бы то ни было организации. При определенных условиях энтропия становится прародительницей порядка.
Суть предлагаемого авторами подхода к проблеме времени можно охарактеризовать как грандиозный синтез, охватывающий наряду с обратимым и необратимое
время и показывающий взаимосвязь того и другого времени не только на уровне макроскопических, но и на уровне микроскопических и субмикроскопических явлений.
Перед нами дерзновенная попытка собрать воедино то, что было разъято на составные части. Аргументация авторов сложна и не всегда доступна пониманию неподготовленного читателя. Но она изобилует свежими идеями, счастливыми догадками и позволяет установить взаимосвязь, казалось бы, разрозненных (не противоречивых) философских понятий.
Дойдя до соответствующего места в книге, мы начинаем осознавать во всем великолепии глубокий синтез, изложенный на ее страницах. Подчеркивая, что необратимое время не аберрация, а характерная особенность большей части Вселенной, Пригожин в Стенгерс подрывают самые основы классической динамики. Для авторов «Порядка из хаоса» выбор между обратимостью и необратимостью не является выбором одной из двух равноправных альтернатив. Обратимость (по крайней мере если речь идет о достаточно больших промежутках времени) присуща замкнутым системам, необратимость - всей остальной части Вселенной.
Показывая, что при неравновесных условиях энтропия может производить не деградацию, а порядок, организацию и в конечном счете жизнь, Пригожин и Стенгерс подрывают и традиционные представления классической термодинамики.
В свою очередь представление об энтропии как об источнике организации означает, что энтропия утрачивает характер жесткой альтернативы, возникающей перед системами в процессе эволюции: в то время как одни системы вырождаются, другие развиваются по восходящей линии и достигают более высокого уровня организации. Такой объединяющий, а не взаимоисключающий подход позволяет биологии и физике сосуществовать, вместо того чтобы находиться в отношении контрадикторной противоположности.
Наконец, нельзя не упомянуть еще об одном синтезе, достигнутом в работе Пригожина и Стенгерс, - установлении ими нового отношения между случайностью и необходимостью.
Роль случайного в окружающем нас мире обсуждается с незапамятных времен - с тех пор, как первобытный охотник споткнулся о подвернувшийся под ноги камень. В Ветхом завете миром безраздельно правит божественная воля. Божественному провидению послушны не только небесные светила, движущиеся по предначертанным орбитам, но и воля всех н каждого из людей. Создатель всего сущего, бог, воплощает в себе первопричину всех явлений. Все происходящее в этом мире заранее предустановлено. О том, как надлежит трактовать божественное предопределение и свободу воли, со времен Блаженного Августина и «Каролингского возрождения» велись ожесточенные споры. В растянувшейся на много веков дискуссии приняли участие Уиклиф, Гус, Лютер, Кальвин.
Не счесть интерпретаторов, пытавшихся примирить детерминизм со свободой воли. Одно из предложенных ими хитроумных решений проблемы состояло в признании детерминированности всего происходящего в мире божественным предопределением с оговоркой относительно свободы воли индивида. Бог не входит в каждое действие индивида, предоставляя тому некую свободу выбора, в пределах которой тот волен принимать решения по своему усмотрению. Таким образом, свобода воли в нижнем этаже мироздания существует лишь в пределах того «меню», которое обитатель верхнего этажа выбирает на свой вкус.
В «мирской» культуре машинного века жесткий детерминизм в большей или меньшей степени сохранил господствующее положение даже после того, как Гейзенберг и «неопределеописты», казалось бы, потрясли его основы. Такие мыслители, как Рене Том, и поныне отвергают идею случайности как иллюзорную и глубоко ненаучную. Столкнувшись со столь сильной философской обструкцией, некоторые рьяные сторонники свободы воли, спонтанности и в конечном счете неопределенности, в частности экзистенциалисты, заняли не менее бескомпромиссную позицию. (Например, Сартр считает, что индивид «полностью и всегда свободен», хотя в некоторых своих произведениях признает существование реальных ограничений иа такую свободу.)
Современные представления о случайности и детерминизме изменились в двух отношениях. Прежде всего возросла их сложность. Вот что говорит по этому поводу известный французский социолог Эдгар Морен, ставший специалистом по эпистемологическим проблемам:
«Не следует забывать о том, что за последние сто лет проблема детерминизма претерпела существенные изменения... На смену представлениям о высших, не ведающих индивидуальных различий перманентных законах, безраздельно властвующих над всем происходящим в природе, пришли представления о законах взаимодействия... Но это еще не все: проблема детерминизма превратилась в проблему порядка во Вселенной. Порядок же подразумевает существование в окружающем мире не только «законов», но и чего-то еще: ограничений, инвариантностей, постоянства каких-то соотношений, той или иной регулярности... Стирающий всякие различия, обезличивающий подход старого детерминизма сменился всячески подчеркивающим различия эволюционным подходом, основанным на использовании детерминаций».
По мере того как обогащалась концепция детерминизма, предпринимались все новые и новые усилия для признания сосуществования случайного и необходимого, связанных между собой отношением не подчинения, а равноправного партнерства во Вселенной, в одно и то же время организующей и дезорганизующей себя.
Именно здесь и появляются на сцене Пригожин и Стенгерс. Им удается продвинуться еще на один шаг: они не только доказывают (вполне убедительно для меня, но недостаточно убедительно для критиков, подобных математику Рене Тому), что в окружающем нас мире действуют и детерминизм, и случайность, но и прослеживают, каким образом необходимость и случайность великолепно согласуются, дополняя одна другую.
Согласно теории изменения, проистекающей из понятия диссипативиой структуры, когда на систему, находящуюся в сильно неравновесном состоянии, действуют, угрожая ее структуре, флуктуации, наступает критический момент -система достигает точки бифуркации. Пригожин и Стенгерс считают, что в точке бифуркации принципиально невозможно предсказать, в какое состояние перейдет система. Случайность подталкивает то, что остается от системы, на новый путь развития, а после того как путь (один из многих возможных) выбран, вновь вступает в силу детерминизм - и так до следующей точки бифуркации.
Таким образом, в теории Пригожина и Стенгерс случайность и необходимость выступают не как несовместимые противоположности: в судьбе системы случайность и необходимость играют важные роли, взаимно дополняя одна другую.
Достигнут в книге Пригожина и Стенгерс и еще один синтез.
Авторы, несомненно, берут на себя большую смелость, повествуя в рамках единого сюжета об обратимом и необратимом времени, хаосе и порядке, физике и биологии, случайности и необходимости, тщательно оговаривая условия существования взаимосвязей между столь далекими понятиями и областями науки. От рисуемой авторами картины при всей ее спорности веет подлинным величием и мощью.
Но сколь ни дерзок авторский замысел, он далеко не полностью объясняет интерес, питаемый широкой читательской аудиторией к книге «Порядок из хаоса». По моему глубокому убеждению, не меньшее значение имеют глубокие социальные и даже политические обертоны, возникающие под влиянием чтения книги. Пригожина и Стенгерс. Подобно тому как ньютоновская модель породила аналогии в политике, дипломатии и других, казалось бы, далеких от науки сферах человеческой деятельности, пригожипская модель также допускает далеко идущие параллели.
Предлагая строгие методы моделирования качественных изменений, Пригожин и Стенгерс позволяют по-новому взглянуть на понятие революции. Объясняя, каким образом иерархия неустойчивостей порождает структурные изменения, авторы «Порядка из хаоса» делают особенно прозрачной теорию организации. Им принадлежит также оригинальная трактовка некоторых психологических процессов, например инновационной деятельности, в которой авторы усматривают связь с «несредним» поведением (nonaverage), аналогичным возникающему в неравновесных условиях.
Еще более важные следствия теория Пригожина и Стенгерс имеет для изучения коллективного поведения. Авторы теории предостерегают против принятия генетических или социобиологических объяснений загадочных
или малопонятных сторон социального поведения. Многое из того, что обычно относят за счет действия тайных биологических пружин, в действительности порождается не «эгоистичными» детерминистскими генами, а социальными взаимодействиями в неравновесных условиях.
(Например, в одном из недавно проведенных исследований муравьи подразделялись на две категории: «тружеников» и неактивных муравьев, или «лентяев». Особенности, определяющие принадлежность муравьев к той или другой из двух категорий, можно было бы опрометчиво отнести за счет генетической предрасположенности. Однако, как показали исследования, если разрушить сложившиеся в популяции связи, разделив муравьев на две группы, состоящие соответственно только из «тружеников» и только из «лентяев», то в каждой из групп в свою очередь происходит расслоение на «лентяев» и «тружеников». Значительный процент «лентяев» внезапно превращается в прилежных «тружеников»])
Не удивительно, что экономисты, специалисты по дн-намике роста городов, географы, занимающиеся проблемами народонаселения, экологи и представители многих других научных специальностей применяют в своих исследованиях идеи, изложенные в прекрасной книге При-гожина и Стенгерс.
Никто (в том числе и авторы) не в силах извлечь все следствия из столь содержательной и богатой идеями работы, как «Порядок из хаоса». Любого читателя одни места этой замечательной книги заведомо поставят в тупик (некоторые ее страницы слишком специальны для тех, кто не имеет основательной естественнонаучной подготовки), другие - озадачат или послужат стимулом к самостоятельным размышлениям (в особенности если импликации из прочитанного попадают «в цель»). Некоторые утверждения авторов читатель встретит довольно скептически, но в целом «Порядок из хаоса», несомненно, обогатит интеллектуальный мир каждого, кто его прочитает. Если о достоинствах книги судить по тому, в какой мере она порождает «хорошие» вопросы, то книга Пригожина и Стенгерс отвечает самым высоким критериям. Приведу лишь несколько из вопросов, возникших у меня при ее чтении.
Как можно было бы определить, что такое флуктуация вне стен лаборатории? Что означают в терминологии Пригожина «причина» и «следствие»? Можно с полной уверенностью утверждать, что, говоря о молекулах, обменивающихся сигналами для достижения когерентного, или синхронизованного, изменения, авторы отнюдь не впадают в антропоморфизм. При чтении книги возникает множество других вопросов. Испускают ли все части окружающей среды сигналы все время или лишь время от времени? Не существует ли косвенная, вторичная или n-го порядка связь, позволяющая молекуле или живому организму реагировать на сигналы, не воспринимаемые непосредственно из-за отсутствия необходимых для этого рецепторов? (Сигнал, испускаемый окружающей средой и не детектируемый индивидом А, может быть воспринят индивидом В и преобразован в сигнал другого рода, для обнаружения которого у А имеется все необходимое. В этом случае индивид В выступает в роли преобразователя сигнала, а индивид А реагирует на изменение окружающей среды, о котором получает сигнал по каналу связи второго рода.)
Возникает немало вопросов и в связи с понятием времени. Как авторы используют выдвинутую гарвардским астрономом Дэвидом Лейзером идею о том, что мы обладаем способностью воспринимать три различные «стрелы времени»: стрелу, связанную с непрерывным расширением Вселенной после Большого взрыва; стрелу, связанную с энтропией, и стрелу, связанную с биологической и исторической эволюцией?
Еще один вопрос: насколько революционна ньютоновская революция? Разделяя мнение некоторых историков науки, Пригожин и Степгерс отмечают неразрывную связь ньютоновских идей с алхимией и религиозными представлениями более раннего происхождения. Некоторые читатели могут заключить из этих слов, что возникновение ньютонианства не было ни скачкообразным, ни революционным. Я все же склонен думать, что произведенный Ньютоном переворот в науке не следует рассматривать как результат линейного развития более ранних идей. Более того, я убежден, что развитая на страницах «Порядка из хаоса» теория изменения свидетельствует о несостоятельности подобньх «континуалистских» взглядов.
Даже если ньютоновская концепция мира не была вполне оригинальной, это отнюдь не означает, что внутренняя структура ньютоновской модели мира была такой же, как у предшественников Ньютона, или находилась в таком же отношении к окружающему внешнему миру.
Ньютоновская система возникла в эпоху крушения феодализма в Западной Европе, когда социальная система находилась, так сказать, в сильно неравновесном состоянии. Модель мироздания, предложенная представителями классической науки (даже если какие-то ее детали были заимствованы у предшественников), нашла приложение в новых областях и распространилась весьма успешно не только вследствие ее научных достоинств или «правильности», но и потому, что возникавшее тогда индустриальное общество, основанное на революционных принципах, представляло необычайно благодатную почву для восприятия новой модели.
Как уже говорилось, машинная цивилизация в попытке обосновать свое место в космическом порядке вещей, ухватилась за ньютоновскую модель и щедро вознаграждала тех, кому удавалось продвинуться хотя бы на шаг в дальнейшем развитии модели. Автокатализ происходит не только в химических колбах, но и прежде всего в умах ученых. Эти соображения позволяют мне рассматривать ньютоновскую систему знаний как своего рода «культурную диссипативную структуру», толчком к возникновению которой послужила социальная флуктуация.
Как я уже отмечал, идеи Пригожина и Стенгерс играют центральную роль в последней по времени научной революции. Есть немалая ирония в том, что я же сам не могу не видеть неразрывной связи этих идей с наследием машинного века и тем явлением, которое получило в моих работах название цивилизации «третьей волны». Если воспользоваться терминологией Пригожина и Стенгерс, то наблюдаемый ныне упадок индустриального общества, или общества «второй волны», можно охарактеризовать как бифуркацию цивилизации, а возникновение более дифференцированного общества «третьей волны» - как переход к новой диссипативной структуре в мировом масштабе. Но коль скоро мы считаем приемлемой эту аналогию, почему бы нам не рассматривать точно таким же образом переход от модели Ньютона к модели Пригожииа? Несомненно, речь идет лишь об аналогии, помогающей, однако, уяснить суть дела.
Наконец, вернемся еще раз к по-прежнему острой проблеме случайности и необходимости. Если Пригожин и Стенгерс правы и случайность играет существенную роль лишь в самой точке бифуркации или в ее ближайшей окрестности (а в промежутках между последовательными бифуркациями разыгрываются строго детерминированные процессы), то не укладывают ли тем самым Пригожин и Стенгерс самую случайность в детерминистическую схему? Не лишают ли они случайность случайности, отводя случаю второстепенную роль?
Этот вопрос я имел удовольствие обсуждать за обедом с Пригожиным. Улыбнувшись, тот заметил в ответ: «Вы были бы правы, если бы не одно обстоятельство. Дело в том, что мы никогда не знаем заранее, когда произойдет следующая бифуркация». Случайность возникает вновь и вновь, как феникс из пепла.
«Порядок из хаоса» - книга яркая, захватывающе интересная, блестяще написанная. Она будоражит воображение и щедро вознаграждает внимательного читателя. Ее нужно изучать, наслаждаться каждой деталью, перечитывать, снова и снова задаваясь вопросами. Эта книга возвращает естественные и гуманитарные науки в мир, где ceteris paribus - миф, в мир, где все остальное редко пребывает в стационарном состоянии, сохраняет тождество или остается неизменным. «Порядок из хаоса» проецирует естествознание на наш современный, бурлящий и изменчивый мир с его нестабильностью и неравновесностью. Выполняя эту функцию, книга Пригожина и Стенгерс отвечает высшему подлинно творческому предназначению: она помогает нам создать новый, не виданный ранее порядок.
Олвин Тоффлер.Предисловие к английскому изданию НОВЫЙ ДИАЛОГ ЧЕЛОВЕКА С ПРИРОДОЙ
Наше видение природы претерпевает радикальные изменения в сторону множественности, темпоральности и сложности. Долгое время в западной науке доминировала механистическая картина мироздания. Ныне мы сознаем, что живем в плюралистическом мире. Существуют явления, которые представляются нам детерминированными и обратимыми. Таковы, например, движения маятника без трения или Земли вокруг Солнца. Но существуют также и необратимые процессы, которые как бы несут в себе стрелу времени. Например, если слить две такие жидкости, как спирт и вода, то из опыта известно, что со временем они перемешаются. Обратный процесс - спонтанное разделение смеси на чистую воду и чистый спирт - никогда не наблюдается. Следовательно, перемешивание спирта и воды - необратимый процесс. Вся химия, по существу, представляет собой нескончаемый перечень таких необратимых процессов.
Ясно, что, помимо детерминированных процессов, некоторые фундаментальные явления, такие, например, как биологическая эволюция или эволюция человеческих культур, должны содержать некий вероятностный элемент. Даже ученый, глубоко убежденный в правильности детерминистических описаний, вряд ли осмелится утверждать, что в момент Большого взрыва, т. е. возникновения известной нам Вселенной, дата выхода в свет нашей книги была начертана на скрижалях законов природы. Классическая физика рассматривала фундаментальные процессы как детерминированные и обратимые. Процессы, связанные со случайностью или необратимостью, считались досадными исключениями из общего правила. Ныне мы видим, сколь важную роль играют повсюду необратимые процессы и флуктуации.
Хотя западная наука послужила стимулом к необычайно плодотворному диалогу между человеком и природой, некоторые из последствий влияния естественных наук на общечеловеческую культуру далеко не всегда носили позитивный характер. Например, противопоставление «двух культур» в значительной мере обусловлено конфликтом между вневременным подходом классической науки и ориентированным во времени подходом, доминировавшим в подавляющем большинстве социальных и гуманитарных наук. Но за последние десятилетия в естествознании произошли разительные перемены, столь же неожиданные, как рождение геометрии или грандиозная картина мироздания, нарисованная в «Математических началах натуральной философии» Ньютона. Мы все глубже осознаем, что на всех уровнях - от элементарных частиц до космологии - случайность и необратимость играют важную роль, значение которой возрастает по мере расширения наших знаний. Наука вновь открывает для себя время. Описанию этой концептуальной революции и посвящена наша книга.
Революция, о которой идет речь, происходит на всех уровнях: на уровне элементарных частиц, в космологии, на уровне так называемой макроскопической физики, охватывающей физику и химию атомов или молекул, рассматриваемых либо индивидуально, либо глобально, как это делается, например, при изучении жидкостей или газов. Возможно, что именно на макроскопическом уровне концептуальный переворот в естествознании прослеживается наиболее отчетливо. Классическая динамика и современная химия переживают в настоящее время период коренных перемен. Если бы несколько лет назад мы спросили физика, какие явления позволяет объяснить его наука и какие проблемы остаются открытыми, он, вероятно, ответил бы, что мы еще не достигли адекватного понимания элементарных частиц или космологической эволюции, но располагаем вполне удовлетворительными знаниями о процессах, протекающих в мaштабах, промежуточных между субмикроскопическим и космологическим уровнями. Ныне меньшинство исследователей, к которому принадлежат авторы этой книги н которое с каждым днем все возрастает, не разделяют подобного оптимизма: мы лишь начинаем понимать уровень природы, на котором живем, и именно этому уровню в нашей книге уделено основное внимание.
Для правильной оценки происходящего ныне концептуального перевооружения физики необходимо рассмотреть этот процесс в надлежащей исторической перспективе. История науки - отнюдь не линейная развертка серии последовательных приближений к некоторой глубокой истине. История науки изобилует противоречиями, неожиданными поворотами. Значительную часть нашей книги мы посвятили схеме исторического развития западной науки, начиная с Ньютона, т. е. с событий трехсотлетней давности. Историю науки мы стремились вписать в историю мысли, с тем чтобы интегрировать ее с эволюцией западной культуры на протяжении последних трех столетий. Только так мы можем по достоинству оценить неповторимость того момента, в который нам выпало жить.
В доставшемся нам научном наследии имеются два фундаментальных вопроса, на которые нашим предшественникам не удалось найти ответ. Один из них - вопрос об отношении хаоса и порядка. Знаменитый закон возрастания энтропии описывает мир как непрестанно эволюционирующий от порядка к хаосу. Вместе с тем, как показывает биологическая или социальная эволюция, сложное возникает из простого. Как такое может быть? Каким образом из хаоса может возникнуть структура? В ответе на этот вопрос ныне удалось продвинуться довольно далеко. Теперь нам известно, что неравновесность - поток вещества или энергии - может быть источником порядка.
Но существует и другой, еще более фундаментальный вопрос. Классическая или квантовая физика описывает мир как обратимый, статичный. В их описании нет места эволюции ни к порядку, ни к хаосу. Информация, извлекаемая из динамики, остается постоянной во времени. Налицо явное противоречие между статической картиной динамики и эволюционной парадигмой термодинамики. Что такое необратимость? Что такое энтропия? Вряд ли найдутся другие вопросы, -которые бы столь часто обсуждались в ходе развития науки. Лишь теперь мы начинаем достигать той степени понимания и того уровня знаний, которые позволяют в той или иной мере ответить на эти вопросы. Порядок и хаос -сложные понятия. Единицы, используемые в статическом описании, которое дает динамика, отличаются от единиц, которые понадобились для создания эволюционной парадигмы, выражаемой ростом энтропии. Переход от одних единиц к другим приводит к новому понятию материи. Материя становится «активной»: она порождает необратимые процессы, а необратимые процессы организуют материю.
По традиции, естественные науки имеют дело с общеутвердительными или общеотрицательными суждениями, а гуманитарные науки - с частноутвердительными или частноотрицательными суждениями. Конвергенция естественных и гуманитарных наук нашла свое отражение в названии французского варианта нашей книги «La Nouvelle Alliance» («Новый альянс»), выпущенной в 1979 г. в Париже издательством Галлимар. Однако нам не удалось найти подходящего английского эквивалента этого названия. Кроме того, текст английского варианта отличается от французского издания (особенно значительны расхождения в гл. 7-9). Хотя возникновение структур в результате неравновесных процессов было вполне адекватно изложено во французском издании (и последовавших затем переводах на другие языки), нам пришлось почти полностью написать заново третью часть, в которой речь идет о результатах наших последних исследований, о корнях понятия времени и формулировке эволюционной парадигмы в рамках естественных наук.
Мы рассказываем о событиях недавнего прошлого. Концептуальное перевооружение физики еще далеко от своего завершения. Тем не менее мы считаем необходимым изложить ситуацию такой, как она представляется иам сейчас. Мы испытываем душевный подъем, ибо начинаем различать путь, ведущий от того, что уже стадо, явилось, к тому, что еще только становится, возникает. Один из нас посвятил изучению проблемы такого перехода большую часть своей научной жизни и, выражая удовлетворение и радость по поводу эстетической привлекательности полученных результатов, надеется, что читатель поймет его чувства и разделит их. Слишком затянулся конфликт между тем, что считалось вечным, вневременным, и тем, что разворачивалось во времени. Мы знаем теперь, что существует более тонкая форма реальности, объемлющая и время, и вечность.
Наша книга является итогом коллективных усилий, в который внесли свой вклад многие коллеги и друзья. К сожалению, мы не можем поблагодарить каждого из них в отдельности. Вместе с тем нам хотелось бы особенно подчеркнуть нашу признательность Эриху Янчу, Аарону Качальскому, Пьеру Ресибуа и Леону Розенфельду, которых уже нет с нами. Свою книгу мы решили посвятить их памяти.
Мы хотим также поблагодарить за постоянную поддержку такие организации, как Международный институт физики и химии (Institut Internationaux de Physique et de Chimie), основанный Э. Сольве, и Фонд Роберта А. Уелча.
Человечество переживает переходный период. В момент демографического взрыва наука должна, по-видимому, играть важную роль. Необходимо поэтому с большим вниманием, чем когда-либо, следить за тем, чтобы каналы связи между наукой и обществом оставались открытыми. Современное развитие западной науки вырвало ее из культурной среды XVII в., в которой зародилась наша наука. Мы глубоко убеждены в том, что современная наука представляет собой универсальное послание, содержание которого более приемлемо для других культурных традиций.
За последние десятилетия книги Олвина Тоффлера сыграли важную роль, обратив внимание широких кругов общественности на некоторые особенности «третьей волны», характеризующей наше время. Мы весьма признательны Э. Тоффлеру за то, что он любезно согласился написать предисловие к английскому варианту нашей книги. Английский - не наш родной язык. Мы считаем, что каждый язык позволяет по-своему, несколько иначе, чем другие, описывать объемлющую нас реальность.
Некоторые из специфических особениостей языка оригинала сохраняются даже при самом тщательном переводе. Мы весьма признательны Джозефу Эрли, Яну Макгилврею, Кэрол Терстон и особенно Карлу Рубина
за помощь при подготовке английского варианта нашей книги. Мы хотели бы также выразить нашу глубокую благодарность Памеле Пейп, тщательно перепечатавшей несколько последовательных приближений к окончательному варианту текста книги «Порядок из хаоса».
ВЫЗОВ НАУКЕ
Не будет преувеличением сказать, что 28 апреля 1686 г.--одна из величайших дат в истории человечества. В этот день Ньютон представил Лондонскому королевскому обществу свои «Математические начала натуральной философии». В них не только были сформулированы основные законы движения, но и определены такие фундаментальные понятия, так масса, ускорение и инерция, которыми мы пользуемся и поныне. Но, пожалуй, самое сильное впечатление на ученый мир произвела Книга III ньютоновских «Начал» - «О системе мира», в которой был сформулирован закон всемирного тяготения. Современники Ньютона тотчас же оценили уникальное значение его труда. Гравитация стала предметом обсуждения в Лондоне и Париже.
С выхода в свет первого издания ньютоновских «Начал» прошло триста лет. Наука росла невероятно быстро и проникла в повседневную жизнь каждого из нас. Наш научный горизонт расширился до поистине фантастических пределов. На микроскопическом конце шкалы масштабов физика элементарных частиц занимается изучением процессов, разыгрывающихся на длинах порядка 10-15 см за время порядка 10~22 с. На другом конце шкалы космология изучает процессы, происходящие за время порядка 1010 лет (возраст Вселенной). Как никогда близки наука и техника. Помимо других факторов, новые биотехнологии и прогресс информационно-вычислительной техники обещают коренным образом изменить самый уклад нашей жизни.
Параллельно с количественным ростом науки происходят глубокие качественные изменения, отзвуки которых выходят далеко за рамки собственно науки и оказывают воздействие на наше представление о природе. Великие основатели западной науки подчеркивали универсальность и вечный характер законов природы, Высшую задачу науки они усматривали в том, чтобы сформулировать общие схемы, которые бы совпадали с идеалом рационального. В предисловии к сборнику работ Исайи Берлина «Против течения» Роджер Хаусхер пишет об этом следующее:
«Они были заняты поиском всеобъемлющих схем, универсальных объединяющих основ, в рамках которых можно было бы систематически, т. е. логическим путем или путем прослеживания причинных зависимостей, обосновать взаимосвязь всего сущего, грандиозных построений, в которых не должно оставаться места для спонтанного, непредсказуемого развития событий, где все происходящее, по крайней мере в принципе, должно быть объяснимо с помощью незыблемых общих законов»1.
История поисков рационального объяснения мира драматична. Временами казалось, что столь амбициозная программа близка к завершению: перед взором ученых открывался фундаментальный уровень, исходя из которого можно было вывести все остальные свойства материи. Приведем лишь два примера такого прозрения истины. Один из них - формулировка знаменитой модели атома Бора, позволившей свести все многообразие атомов к простым планетарным системам из электронов и протонов. Другой период напряженного ожидания наступил, когда у Эйнштейна появилась надежда на включение всех физических законов в рамки так называемой единой теории поля. В унификации некоторых из действующих в природе фундаментальных сил действительно был достигнут значительный прогресс. Но столь желанный фундаментальный уровень по-прежнему ускользает от исследователей. Всюду, куда ни посмотри, обнаруживается эволюция, разнообразие форм и неустойчивости. Интересно отметить, что такая картина наблюдается на всех уровнях - в области элементарных частиц, в биологии и в астрофизике с ее расширяющейся Вселенной и образованием черных дыр.
Как уже упоминалось в предисловии, наше видение природы претерпевает радикальные изменения в сторону множественности, темпоральности и сложности.
Весьма примечательно, что неожиданная сложность, обнаруженная в природе, привела не к замедлению прогресса науки, а, наоборот, способствовала появлению новых концептуальных структур, которые ныне представляются существенными для нашего понимания физического мира -мира, частью которого мы являемся. Именно эту новую, беспрецедентную в истории науки ситуацию мы и хотим проанализировать в нашей книге.
История трансформации наших представлений о науке и природе вряд ли отделима от другой истории - чувств и эмоций, вызываемых наукой. С каждой интеллектуальной программой всегда связаны новые надежды, опасения и ожидания. В классической науке основной акцент делался на законах, не зависящих от времени. Предполагалось, что, как только произвольно выбранное мгновенное состояние системы будет точно измерено, обратимые законы науки позволят предсказать будущее системы и полностью восстановить ее прошлое. Вполне естественно, что такого рода поиск вечной истины, таящийся за изменчивыми явлениями, вызывал энтузиазм. Нужно ли говорить, сколь сильное потрясение пережили ученые, осознав, что классическое описание в действительности принижает природу: именно успехи, достигнутые наукой, позволили представить природу в виде некоего автомата или робота.
Потребность свести многообразие природы к хитросплетению иллюзий свойственна западной мысли со времен греческих атомистов. Лукреций, популяризируя учения Демокрита и Эпикура, писал, что мир - «всего лишь» атомы и пустота и он вынуждает нас искать скрытое за видимым:
Чтоб к словам моим ты с недовернем все же не отнесся, Из-за того, что начала вещей недоступны для глаза, Выслушав то, что скажу, и ты сам, несомненно, признаешь, Что существуют тела, которых мы видеть не можем2.
Хорошо известно, однако, что побудительным мотивом в работах греческих атомистов было стремление не принизить природу, а освободить человека от страха - страха перед любым сверхъестественным существом или порядком, превосходящим порядки, устанавливаемые людьми или природой. Лукреций неоднократно повторяет, что бояться нам нечего, что в мире нет ничего, кроме вечно изменяющихся комбинаций атомов в пустоте.
Современная наука превратила по существу этическую установку древних атомистов в установленную истину, и эта истина-сведение природы к атомам и пустоте - в свою очередь породила то, что Ленобль3 назвал «беспокойством современных людей». Каким образом мы сознаем себя в случайном мнре атомов? Не следует ли определять науку через разрыв, пролегающий между человеком и природой?
«Все тела, небесный свод, звезды, Земля и ее царства не идут в сравнение с самым низким из умов, ибо ум несет в себе знание обо всем этом, тела же не ведают ничего». Эта мысль Паскаля пронизана тем же ощущением отчуждения, какое мы встречаем и у таких современных ученых, как Жак Моно:
«Человек должен наконец пробудиться от тысячелетнего сна, и, пробудившись, он окажется в полном одиночестве, в абсолютной изоляции. Лишь тогда он наконец осознает, что, подобно цыгану, живет на краю чуждого ему мира. Мира, глухого к его музыке, безразличного к его чаяниям, равно как и к его страданиям или преступлениям»6.
Парадокс! Блестящий успех молекулярной биологии - расшифровка генетического кода, в которой Моно принимал самое деятельное участие, - завершается на трагической ноте. Именно это блестящее достижение человеческого разума, говорит нам Моно, превращает нас в безродных бродяг, кочующих по окраинам Вселенной. Как это объяснить? Разве наука не средство связи, не диалог человека с природой?
В прошлом нередко проводились существенные различия между миром человека и миром природы, который предполагался чуждым человеку. Наиболее ярко это умонастроение передано в знаменитом отрывке из «Новой науки» Вико:
«...В ночи беспросветного мрака, окутывающего раннюю античность, столь далекую от нас, сияет вечный немеркнущий свет бесспорной истины: мир цивилизованного общества заведомо сотворен людьми, поэтому принципы, на которых он зиждется, надлежит искать в изменчивости нашего собственного человеческого разума. Всякий, кому случалось поразмыслить над этим, не может не удивляться, зачем нашим философам понадобилось затратить столько энергии на изучение мира природы, известного лишь одному господу богу с тех пор, как тот сотворил этот мир, и почему они пренебрегли изучением мира наций, или цивилизованного мира, созданного людьми и познаваемого ими»6.
Современные исследования все дальше уводят нас от противопоставления человека миру природы. Одну из главных задач нашей книги мы видим в том, чтобы показать растущее согласие наших знаний о человеке и природе - согласие, а не разрыв и противопоставление.
В прошлом искусство вопрошать природу, умение задавать ей вопросы принимало самые различные формы. Шумеры создали письменность. Шумерские жрецы были убеждены в том, что будущее запечатлено тайными письменами в событиях, происходящих вокруг нас в настоящем. Шумеры даже систематизировали свои воззрения в причудливом смешении магических и рациональных элементов7. В этом смысле мы можем утверждать, что западная наука, начавшаяся в XVII в., лишь открыла новую главу в длящемся с незапамятных времен нескончаемом диалоге человека и природы.
Александр Койре8 определил нововведение, привнесенное современной наукой, термином «экспериментирование». Современная наука основана на открытии новых, специфических форм связи с природой, т. е. на убеждении, что природа отвечает на экспериментальные вопросы. Каким образом можно было бы дать более точное определение экспериментальному диалогу? Экспериментирование означает не только достоверное наблюдение подлинных фактов, не только поиск эмпирических зависимостей между явлениями, но и предполагает систематическое взаимодействие между теоретическими понятиями и наблюдением.
Ученые на сотни различных ладов выражали свое изумление по поводу того, что при правильной постановке вопроса им удается разгадать любую головоломку, которую задает им природа. В этом отношении наука подобна игре двух партнеров, в которой нам необходимо предугадать поведение реальности, не зависящей от наших убеждений, амбиций или надежд. Природу невозможно заставить говорить то, что нам хотелось бы услышать. Научное исследование - не монолог. Задавая вопрос природе, исследователь рискует потерпеть неудачу, но именно риск делает эту игру столь увлекательной.
Но уникальность западной науки отнюдь не исчерпывается такого рода методологическими соображениями. Обсуждая нормативное описание научной рациональности, Карл Поппер был вынужден признать, что в конечном счете рациональная наука обязана своим существованием достигнутым успехам: научный метод применим лишь благодаря отдельным удивительным совпадениям между априорными теоретическими моделями и экспериментальными результатами9. Наука - игра, связанная с риском, но тем не менее науке удалось найти вопросы, на которые природа дает непротиворечивые ответы.
Успех западной науки - исторический факт, непредсказуемый априори, с которым, однако, нельзя не считаться. Поразительный успех современной науки привел к необратимым изменениям наших отношений с природой. В этом смысле термин «научная революция» следует считать вполне уместным и правильно отражающим существо дела. История человечества отмечена и другими поворотными пунктами, другими исключительными стечениями обстоятельств, приводившими к необратимым изменениям. Одно из таких событий решающего значения известно под названием неолитической революции. Как и в случае «выборов», производимых в ходе биологической эволюции, мы можем строить лишь более или менее правдоподобные догадки относительно того, почему неолитическая революция протекала так, а не иначе, в то время как относительно решающих эпизодов в эволюции науки мы располагаем богатой информацией. Так называемая неолитическая революция длилась тысячелетия. Несколько упрощая, можно утверждать, что научная революция началась всего лишь триста лет назад. Нам представляется, по-видимому, уникальная возможность полностью разобраться в том характерном и поддающемся анализу переплетении случайного и необходимого, которое отличает научную революцию.
Наука начала успешный диалог с природой. Вместе с тем первым результатом этого диалога явилось открытие безмолвного мира. В этом - парадокс классической науки. Она открыла людям мертвую, пассивную природу, поведение которой с полным основанием можно сравнить с поведением автомата: будучи запрограммированным, автомат неукоснительно следует предписаниям, заложенным в программе. В этом смысле диалог с природой вместо того, чтобы способствовать сближению человека с природой, изолировал его от нее. Триумф человеческого разума обернулся печальной истиной. Наука развенчала все, к чему ни прикоснулась.
Современная наука устрашила и своих противников, видевших в ней смертельную угрозу, и даже кое-кого из своих приверженцев, усматривавших в «открытой» наукой изоляции человека плату, взимаемую с нас за новую рациональность.
Ответственность за нестабильное положение науки в обществе, по крайней мере отчасти, может быть возложена на напряженность, возникшую в культуре с появлением классической науки. Бесспорно, что классическая наука привела к героическому принятию суровых выводов из рациональности мира. Но столь же несомненно, что именно классическая наука стала причиной, по которой рациональность была решительно и безоговорочно отвергнута. В дальнейшем мы еще вернемся к современным антинаучным движениям, а пока приведем более давний пример - иррационалистское движение 20-х годов в Германии, на фоне которого зарождалась квантовая механика10. В противовес науке, отождествлявшейся с такими понятиями, как причинность, детерминизм, редукционизм и рациональность, в Германии тех лет махровым цветом расцвели отрицаемые наукой идеи, в которых противники наукн усматривали выражение иррациональности, якобы присущей природе. Жизнь, судьба, свобода и спонтанность воспринимались иррационалистами как внешние проявления призрачного потустороннего мира, недоступного человеческому разуму. Не вдаваясь в анализ конкретной общественно-политической обстановки, сложившейся в Германии 20-х годов и породившей разнузданную антинаучную кампанию, заметим лишь, что отказ от рациональности продемонстрировал, какие опасности сопутствуют классической науке. Признавая один субъективный смысл за суммой опыта, имеющего, по мнению тех или иных людей, определенную ценность, наука рискует перенести этот опыт в сферу иррационального, наделив его поистине всесокрушающей силой.
Как подчеркивал Джозеф Нидэм, западноевропейская мысль всегда испытывала колебания между миром-автоматом н теологией с ее миром, безраздельно подвластным богу. В этой раздвоенности - суть того, что Нидэм называет «характерной европейской шизофренией»11. В действительности оба взгляда на мир взаимосвязаны. Автомату необходим внешний бог.
Сколь остро стоит перед нами проблема описанного выше трагического выбора? Действительно ли нам необходимо выбирать между наукой, приводящей к отчуждению человека от природы, и антинаучным метафизическим взглядом на мир? Авторы предлагаемой вниманию читателя книги убеждены в том, что в настоящее время необходимость в подобного рода выборе отпала, поскольку изменения, происходящие в современной науке, породили ситуацию, в корне отличную от прежней. Дело в том, что эволюция науки, начавшаяся совсем недавно, предоставляет нам уникальную возможность переоценки места, занимаемого наукой в общечеловеческой культуре. Современное естествознание зародилось в специфических условиях, сложившихся в Европе XVII в. Нам, живущим в конце XX в., накопленный опыт позволяет утверждать, что наука выполняет некую универсальную миссию, затрагивающую взаимодействие не только человека и природы, но и человека с человеком.
От каких предпосылок классической науки удалось избавиться современной науке? Как правило, от тех, которые были сосредоточены вокруг основополагающего тезиса, согласно которому на определенном уровне мир устроен просто и подчиняется обратимым во времени фундаментальным законам. Подобная точка зрения представляется нам сегодня чрезмерным упрощением. Разделять ее означает уподобляться тем, кто видит в зданиях лишь нагромождение кирпича. Но из одних и тех же кирпичей можно построить и фабричный корпус, н дворец, и храм. Лишь рассматривая здание как единое целое, мы обретаем способность воспринимать его как продукт эпохи, культуры, общества, стиля. Существует и еще одна вполне очевидная проблема: поскольку окружающий нас мир никем не построен, перед нами возникает необходимость дать такое описание его мельчайших «кирпичиков» (т. е. микроскопической структуры мира), которое объясняло бы процесс самосборки.
Предпринятый классической наукой поиск истины сам по себе может служить великолепным примером той раздвоенности, которая отчетливо прослеживается на протяжении всей истории западноевропейской мысли. Традиционно лишь неизменный мир идей считался, если воспользоваться выражением Платона, «освещенным солнцем умопостигаемого». В том же смысле научную рациональность было принято усматривать лишь в вечных и неизменных законах. Все же временное и преходящее рассматривалось как иллюзия. Ныне подобные взгляды считаются ошибочными. Мы обнаружили, что в природе существенную роль играет далеко не иллюзорная, а вполне реальная необратимость, лежащая в основе большинства процессов самоорганизации. Обратимость и жесткий детерминизм в окружающем нас мире применимы только в простых предельных случаях. Необратимость и случайность отныне рассматриваются не как исключение, а как общее правило.
Отрицание времени и сложности занимало центральное место в культурных проблемах, возникавших в связи с научными исследованиями в их классическом определении. Понятия времени и сложности, не дававшие покоя многим поколениям естествоиспытателей и философов, имели решающее значение н для тех метаморфоз науки, о которых пойдет речь в дальнейшем. В своей замечательной книге «Природа физического мира» Артур Эддингтон12 ввел различие между первичными и вторичными законами. Первичным законам подчиняется поведение отдельных частиц, в то время как вторичные законы применимы к совокупностям, или ансамблям, атомов или молекул. Подчеркивание роли вторичных законов означает, что описания поведения элементарных компонент недостаточно для понимания системы как целого. Ярким примером вторичного закона, по Эддингтону, может служить второе начало термодинамики - закон, который вводит в физику «стрелу времени». Вот что пишет о втором начале термодинамики Эддингтон:
«С точки зрения философии науки концепцию, связанную с энтропией, несомненно, следует отнести к одному из наиболее значительных вкладов XIX в. в научное мышление. Эта концепция ознаменовала реакцию на традиционную точку зрения, согласно которой все достойное внимания науки может быть открыто лишь путем рассечения объектов на микроскопические части»13.
В наши дни тенденция, о которой упоминает Эддингтои, необычайно усилилась. Нужно сказать, что некоторые из наиболее крупных открытий современной науки (такие, как открытие молекул, атомов или элементарных частиц) действительно были совершены на микроскопическом уровне. Например, выделение специфических молекул, играющих важную роль в механизме жизни, по праву считается выдающимся достижением молекулярной биологии. Достигнутый ею успех был столь впечатляющим, что для многих ученых цель проводимых ими исследований стала отождествляться, по выражению Эддингтона, с «рассечением объектов на микроскопические части». Что же касается второго начала термодинамики, то оно впервые заставило усомниться в правильности традиционной концепции природы, объяснявшей сложное путем сведения его к простоте некоего скрытого мира. В наши дни основной акцент научных исследований переместился с субстанции на отношение, связь, время.
Столь резкое изменение перспективы отнюдь не является результатом принятия произвольного решения. В физике нас вынуждают к нему новые непредвиденные открытия. Кто бы мог ожидать, что многие (если даже не все) элементарные частицы окажутся нестабильными? Кто бы мог ожидать, что с экспериментальным подтверждением гипотезы расширяющейся Вселенной перед нами откроется возможность проследить историю окружающего нас мира как единого целого?
К концу XX в. мы научились глубже понимать смысл двух великих революций в естествознании, оказавших решающее воздействие на формирование современной физики: создания квантовой механики и теории относительности. Обе революции начались с попыток исправить классическую механику путем введения в нее вновь найденных универсальных постоянных. Ныне ситуация изменилась. Квантовая механика дала нам теоретическую основу для описания нескончаемых превращений одних частиц в другие. Аналогичным образом общая теория относительности стала тем фундаментом, опираясь на который мы можем проследить тепловую историю Вселенной на ее ранних стадиях.
По своему характеру наша Вселенная плюралистична, комплексна. Структуры могут исчезать, но могут н возникать. Одни процессы при существующем уровне знаний допускают описание с помощью детерминированных уравнений, другие требуют привлечения вероятностных соображений.
Как можно преодолеть явное противоречие между детерминированным и случайным? Ведь мы живем в едином мире. Как будет показано в дальнейшем, мы лишь теперь начинаем по достоинству оценивать значение всего круга проблем, связанных с необходимостью и случайностью. Кроме того, мы придаем совершенно иное, а иногда и прямо противоположное, чем классическая физика, значение различным наблюдаемым и описываемым нами явлениям. Мы уже упоминали о том, что по существовавшей ранее традиции фундаментальные процессы было принято считать детерминированными и обратимыми, а процессы, так или иначе связанные со случайностью или необратимостью, трактовать как исключения из общего правила. Ныне мы повсюду видим, сколь важную роль играют необратнмые процессы, флуктуации. Модели, рассмотрением которых занималась классическая физика, соответствуют, как мы сейчас понимаем, лишь предельным ситуациям. Их можно создать искусственно, поместив систему в ящик и подождав, пока она не придет в состояние равновесия.
Искусственное может быть детерминированным и обратимым. Естественное же непременно содержит элементы случайности и необратимости. Это замечание приводит нас к новому взгляду на роль материи во Вселенной. Материя - более не пассивная субстанция, описываемая в рамках механистической картины мира, ей также свойственна спонтанная активность. Отличие нового взгляда на мир от традиционного столь глубоко, что, как уже упоминалось в предисловии, мы можем с полным основанием говорить о новом диалоге человека с природой.
Наша книга повествует о концептуальных метаморфозах, которые произошли в науке от «золотого века» классической науки до современности. К описанию этих метаморфоз ведут многие пути. Мы могли бы проанализировать проблемы физики элементарных частиц или проследить за увлекательным развитием событий, разыгравшихся недавно в астрофизике. И физика элементарных частиц, н современная астрофизика существенно расширили границы науки. Но, как уже упоминалось в предисловии, за последние годы было обнаружено так много новых свойств н особенностей явлений природы, протекающих на промежуточном уровне, что мы решили сосредоточить все внимание на этом уровне - на проблемах, относящихся главным образом к макроскопическому миру, состоящему из огромного числа атомов и молекул, в том числе н бномолекул. Вместе с тем нельзя не подчеркнуть, что на любом уровне, будь то теория элементарных частиц, химия, биология или космология, развитие науки происходит более или менее параллельно. В любом масштабе самоорганизация, сложность и время играют неожиданно новую роль.
Наша цель состоит в том, чтобы с определенной точки зрения рассмотреть, как развивалась наука за последние триста лет. Произведенный нами отбор материала заведомо субъективен. Дело в том, что проблема времени всегда находилась в центре научных интересов одного из нас н ее исследованием он занимался всю свою жизнь. Еще в бытность свою студентом Брюссельского университета, где ему довелось впервые соприкоснуться с физикой и химией, он был поражен, как мало могут сказать естественные наукн о времени (скудость естественнонаучных представлений о времени была тем более очевидна для него, что еще до поступления в университет он изучал цикл гуманитарных дисциплин, из которых ведущими были история и археология). Испытанное им чувство удивления могло привести его к одной из двух позиций относительно проблемы времени, многочисленные примеры которых неоднократно встречались в прошлом: к полному пренебрежению проблемой времени, поскольку в классической науке нет места времени, н к поиску какого-нибудь другого способа постижения природы, в котором бы времени отводилась иная, более существенная по своему значению роль. Именно второй путь избрали Бергсон и Уайтхед, если ограничиться именами лишь двух философов XX в. Первую позицию можно было бы назвать позитивистской, вторую - метафизической.
Существует, однако, и третий путь: можно было задать вопрос, не объясняется ли простота временной эволюции, традиционно рассматриваемой в физике и химии, тем, что в этих науках основное внимание уделяется чрезмерно упрощенным ситуациям - грудам кирпича вместо храма, о котором мы уже упоминали.
Наша книга состоит из трех частей. В первой части мы расскажем о триумфе классической науки и культурных последствиях этого триумфа. (Первоначально науку встречали с энтузиазмом.) Затем мы опишем поляризацию культуры, к которой привела классическая наука и ее поразительный успех. Воспринимать ли нам этот успех как таковой, быть может ограничивая проистекающие из него последствия, или сам научный метод должен быть отвергнут как неполный или 'иллюзорный? Какой бы ответ мы ни избрали, результат окажется одним и тем же: столкновение между тем, что часто принято называть «двумя культурами», - между естественными науками и гуманитарным знанием.
С самого зарождения классической науки западноевропейская мысль придавала этим вопросам первостепенное значение. К проблеме выбора мы возвращаемся неоднократно. Именно в вопресе «Чему отдать предпочтение?» Исайя Берлин справедливо усматривает начало раскола между естественными и гуманитарными науками:
«Специальное и уникальное или повторяющееся и общее, универсальное, конкретное или абстрактное, вечное движение или покой, внутреннее или внешнее, качество или количество, зависимость от культуры или вневременные принципы, борение духа и самоизменение как постоянное состояние человека или возможность (и желательность) покоя, порядка, окончательной гармонии и удовлетворение всех разумных человеческих желаний - таковы некоторые аспекты этой противоположности»14.
Немало страниц нашей книги посвящено классической механике. Мы считаем, что она представляет собой «наблюдательный пункт», из которого особенно удобно следить за трансформацией, переживаемой современной наукой. В классической динамике особенно ярко и четко запечатлен статический взгляд на природу. Время низведено до роли параметра, будущее и прошлое эквивалентны. Квантовая механика подняла много новых проблем, не затронутых классической динамикой, но сохранила целый ряд концептуальных позиций классической динамики, в частности по кругу вопросов, относящихся ко времени и процессу.
Первые признаки угрозы грандиозному ньютоновскому построению появились еще в начале XIX в. - в период торжества классической науки, когда ньютоновская программа занимала господствующее положение во французской науке, а та в свою очередь доминировала в Европе. Во второй части нашей книги мы проследим за развитием науки о теплоте - сопернице ньютоновской теории тяготения, начиная с первой «перчатки», брошенной классической динамике, когда Фурье сформулировал закон теплопроводности. Теория Фурье была первым количественным описанием явления, немыслимого в классической динамике, - необратимого процесса.
Два потомка теории теплоты по прямой линии - наука о превращении энергии из одной формы в другую и теория тепловых машин - совместными усилиями привели к созданию первой «иеклассической» науки - термодинамики. Ни один из вкладов в сокровищницу науки, внесенных термодинамикой, не может сравниться по новизне со знаменитым вторым началом термодинамики, с появлением которого в физику впервые вошла «стрела времени». Введение односторонне направленного времени было составной частью более широкого движения западноевропейской мысли. XIX век по праву может быть назван веком эволюции: биология, геология и социология стали уделять в XIX в. все большее внимание изучению процессов возникновения новых структурных элементов, увеличения сложности. Что же касается термодинамики, то в основе ее лежит различие между двумя типами процессов: обратимыми процессами, не зависящими от направления времени, и необратимыми процессами, зависящими от направления времени. С примерами обратимых и необратимых процессов мы познакомимся в дальнейшем. Понятие энтропии для того и было введено, чтобы отличать обратимые процессы от необратимых: энтропия возрастает только в результате необратимых процессов.
На протяжении XIX в. в центре внимания находилось исследование конечного состояния термодинамической эволюции. Термодинамика XIX в. была равновесной термодинамикой. На неравновесные процессы смотрели как на второстепенные детали, возмущения, мелкие несущественные подробности, не заслуживающие специального изучения. В настоящее время ситуация полностью изменилась. Ныне мы знаем, что вдали от равновесия могут спонтанно возникать новые типы структур. В сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса, к порядку. Могут возникать новые динамические состояния материи, отражающие взаимодействие данной системы с окружающей «средой. Эти новые структуры мы назвали диссипативными структурами, стремясь подчеркнуть конструктивную роль диссипативпых процессов в их образовании.
В нашей книге приведены некоторые из методов, разработанных в последние годы для описания того, как возникают и эволюционируют диссипативные структуры. При изложении их мы впервые встретимся с такими ключевыми словами, как «нелинейность», «неустойчивость», «флуктуация», проходящими через всю книгу, как лейтмотив. Эта триада начала проникать в наши взгляды на мир и за пределами физики и химии.
При обсуждении противоположности между естественными и гуманитарными науками мы процитировали слова Исайи Берлина. Специфичное и уникальное Берлин противопоставлял повторяющемуся и общему. Замечательная особенность рассматриваемых нами процессов заключается в том, что при переходе от равновесных условий к сильно неравновесным мы переходим от повторяющегося и общего к уникальному и специфичному. Действительно, законы равновесия обладают высокой общностью: они универсальны. Что же касается поведения материи вблизи состояния равновесия, то ему свойственна «повторяемость». В то же время вдали от равновесия начинают действовать различные механизмы, соответствующие возможности возникновения диссипативных структур различных типов. Например, вдали от равновесия мы можем наблюдать возникновение химических часов - химических реакций с характерным когерентным (согласованным) периодическим изменением концентрации реагентов. Вдали от равновесия наблюдаются также процессы самоорганизации, приводящие к образованию неоднородных структур - неравновесных кристаллов.
Следует особо подчеркнуть, что такое поведение сильно неравновесных систем довольно неожиданно. Действительно, каждый из нас интуитивно представляет себе, что химическая реакция протекает примерно следующим образом: молекулы «плавают» в пространстве, сталкиваются и, перестраиваясь в результате столкновения, превращаются в новые молекулы. Хаотическое поведение молекул можно уподобить картине, которую рисуют атомисты, описывая движение пляшущих в воздухе пылинок. Но в случае химических часов мы сталкиваемся с химической реакцией, протекающей совсем не так, как нам подсказывает интуиция. Несколько упрощая ситуацию, можно утверждать, что в случае химических часов все молекулы изменяют свое химическое тождество одновременно, через правильные промежутки времени. Если представить себе, что молекулы исходного вещества и продукта реакции окрашены соответственно в синий и красный цвета, то мы увидели бы, как изменяется их цвет в ритме химических часов.
Ясно, что такую периодическую реакцию невозможно описать исходя из интуитивных представлений о хаотическом поведении молекул. Возник порядок нового, ранее не известного типа. В данном случае уместно говорить о новой когерентности, о механизме «коммуникации» между молекулами. Но связь такого типа может возникать только в сильно неравновесных условиях. Интересно отметить, что подобная связь широко распространена в мире живого. Существование ее можно принять за самую основу определения биологической системы.
Необходимо также добавить, что тип диссипативной структуры в значительной степени зависит от условий ее образования. Существенную роль в отборе механизма самоорганизации могут играть внешние поля, например гравитационное поле Земли или магнитное поле.
Мы начинаем понимать, каким образом, исходя из-химии, можно построить сложные структуры, сложные формы, в том числе и такие, которые способны стать предшественниками живого. В сильно неравновесных явлениях достоверно установлено весьма важное и неожиданное свойство материи: впредь физика с полным основанием может описывать структуры как формы адаптации системы к внешним условиям. Со своего рода механизмом предбиологической адаптациимы встречаемся в простейших химических системах. На несколько антропоморфном языке можно сказать, что в состоянии равновесия материя «слепа», тогда как в сильно неравновесных условиях она обретает способность воспринимать различия во внешнем мире (напримep, слабые гравитационные и электрические поля) и «учитывать» их в своем функционировании.
Разумеется, проблема происхождения жизни по-прежнему остается весьма трудной, и мы не ожидаем в ближайшем будущем сколько-нибудь простого ее решения. Тем не менее при нашем подходе жизнь перестает противостоять «обычным» законам физики, бороться против них, чтобы избежать предуготованной ей судьбы - гибели. Наоборот, жизнь предстает перед нами как своеобразное проявление тех самых условий, в которых находится наша биосфера, в том числе нелинейности химических реакций и сильно неравновесных условий, налагаемых на биосферу солнечной радиацией.
Мы подробно обсуждаем понятия, позволяющие описывать образование диссипативных структур, например понятия теории бифуркаций. Следует подчеркнуть, что вблизи точек бифуркации в системах наблюдаются значительные флуктуации. Такие системы как бы «колеблются» перед выбором одного из нескольких путей эволюции, и знаменитый закон больших чисел, если понимать его как обычно, перестает действовать. Небольшая флуктуация может послужить началом эволюции в совершенно новом направлении, которое резко изменит все поведение макроскопической системы. Неизбежно напрашивается аналогия с социальными явлениями и даже с историей. Далекие от мысли противопоставлять случайность и необходимость, мы считаем, что оба аспекта играют существенную роль в описании нелинейных сильно неравновесных систем.
Резюмируя, можно сказать, что в двух первых частях нашей книги мы рассматриваем два противоборствующих взгляда на физический мир: статический подход классической динамики и эволюционный взгляд, осиоваиный на использовании понятия энтропии. Конфронтация между столь противоположными подходами неизбежна. Ее долго сдерживал традиционный взгляд на необратимость как на иллюзию, приближение. Время в лишенную времени Вселенную ввел человек. Для нас неприемлемо такое решение проблемы необратимости, при
котором необратимость низводится до иллюзии или является следствием тех или иных приближений, поскольку, как мы теперь знаем, необратимость может быть источником порядка, когерентности, организации.
Конфронтация вневременного подхода классической механики и эволюционного подхода стала неизбежной. Острому столкновению этих двух противоположных подходов к описанию мира посвящена третья часть нашей книги. В ней мы подробно рассматриваем традиционные попытки решения проблемы необратимости, предпринятые сначала в классической, а затем и квантовой механике. Особую роль при этом сыграли пионерские работы Больцмана и Гнббса. Тем не менее мы можем с полным основанием утверждать, что проблема необратимости во многом осталась нерешенной. По словам Карла Поппера, история была драматической: сначала Больцман считал, что ему удалось дать объективную формулировку нового понятия времени, вытекающего из второго начала термодинамики, но в результате полемики с Цермело и другими противниками был вынужден отступить:
«В свете (или во тьме) истории Больцман по всем принятым стандартам потерпел поражение, хотя все признают, что он был выдающимся физиком. Ему так и не удалось рассеять все сомнения относительно статуса предложенной им Н-теоремы или объяснить возрастание энтропии... Оказываемое на него давление было столь велико, что он утратил веру в себя...».
Проблема необратимости и поныне остается предметом оживленных споров. Как такое возможно через стопятьдесят лет после открытия второго начала термодинамики? У этого вопроса имеется много аспектов, как. культурных, так и технических. Неверие в существование времени неизбежно таит в себе культурную компоненту. Мы неоднократно будем цитировать высказывания Эйнштейна. Его окончательное суждение гласит: «Время (как необратимость)-не более чем иллюзия». По существу, Эйнштейн лишь повторил то, о чем еще в XVI в. писал Джордано Бруно н что на протяжении веков было символом веры естествознаиня:
«Итак, Вселенная едина, бесконечна, неподвижна... Она не движется в пространстве... Она не рождается... Она не уничтожается... Она не может уменьшаться или увеличиваться...»
Долгое время взгляды Бруно господствовали в естественнонаучном мышлении западного мира. Нужно ли удивляться, что после такой предыстории вторжение необратимости, обязанной своим происхождением инженерным наукам и физической химии, было воспринято с недоверием. Но помимо культурных причин, существовали и технические. Любая попытка «вывести» необратимость из динамики неминуемо обречена на провал, поскольку необратимость - явление не универсальное. Мы легко можем представить себе строго (а не приближенно) обратимые ситуации, например маятник без трения или движение планет. Неудачи, постигшие все предпринимавшиеся в прошлом попытки «вывести» необратимость из динамики, привели к разочарованию и создали впечатление, что понятие необратимости по своему происхождению субъективно. Все эти проблемы в дальнейшем мы обсудим более подробно, а пока ограничимся следующим замечанием. Проблему необратимости можно рассматривать сегодня с другой точки зрения, поскольку, как теперь известно, существуют различные классы динамических систем. Мир далеко не однороден. Следовательно, интересующий нас вопрос также может быть поставлен иначе: имеется ли в структуре динамических систем нечто специфическое, позволяющее им «отличать» прошлое от будущего? Какова необходимая для этого минимальная сложность?
Такая постановка вопроса позволила нам продвинуться вперед. Ныне мы можем с большей точностью судить об истоках понятия времени в природе, и это обстоятельство приводит к далеко идущим последствиям. Необратимость вводится в макроскопический мир вторым началом термодинамики - законом неубывания энтропии. Теперь мы понимаем второе начало термодинамики и на микроскопическом уровне. Как будет показано в дальнейшем, второе начало термодинамики выполняет функции правила отбора - ограничения начальных условий, распространяющиеся в последующие моменты времени по законам динамики. Тем самым второе начало вводит в наше описание природы новый, несводимый к чему-либо элемент. Второе начало термодинамики не противоречит динамике, но не может быть выведено из нее.
Уже Больцман понимал, что между вероятностью и необратимостью должна существовать тесная связь. Различие между прошлым и будущим и, следовательно, необратимость могут входить в описание системы только в том случае, если система ведет себя достаточно случайным образом. Наш анализ подтверждает эту точку зрения. Действительно, что такое стрела времени в детерминистическом описании природы? В чем ее смысл? Если будущее каким-то образом содержится в настоящем, в котором заключено и прошлое, то что, собственно, означает стрела времени? Стрела времени является проявлением того факта, что будущее не задано, т. е. того, что, по словам французского поэта Поля Валери, «время есть конструкция»17.
Наш повседневный жизненный опыт показывает, что между временем и пространством существует коренное различие. Мы можем передвигаться из одной точки пространства в другую, но не в силах повернуть время вспять. Мы не можем переставить прошлое и будущее. Как мы увидим в дальнейшем, это ощущение невозможности обратить время приобретает теперь точный научный смысл. Допустимые («разрешенные») состояния отделены от состояний, запрещенных вторым началом термодинамики, бесконечно высоким энтропийным барьером. В физике имеется немало других барьеров. Одним из них является скорость света. По современным представлениям, сигналы не могут распространяться быстрее скорости света. Существование этого барьера весьма важно: не будь его, причинность рассыпалась бы в прах. Аналогичным образом энтропийный барьер является предпосылкой, позволяющей придать точный физический смысл связи. Представьте себе, что бы случилось, если бы наше будущее стало бы прошлым каких-то других людей! К обсуждению этой проблемы мы еще вернемся.
Новейшие достижения физики еще раз подчеркнули реальность времени. Открытия последних лет обнаружили новые аспекты времени. На протяжении всего XX в. проблема времени занимала умы наиболее выдающихся мыслителей современности. Вспомним хотя бы А. Эйнштейна, М. Пруста, 3. Фрейда, Тейяра де Шардена, Ч. Пирса или А. Уайтхеда.
Одним из наиболее удивительных результатов специальной теории относительности Эйнштейна, опубликованной в 1905 г., было введение локального времени, связанного с каждым наблюдателем. Однако эйнштейновское локалыгое время оставалось обратимым временем. И в специальной, и в общей теории относительности Эйнштейн видел проблему в установлении «связи» между наблюдателями - в указании способа, который позволил бы наблюдателям сравнивать временные интервалы. Теперь мы получаем возможность исследовать проблему времени в других концептуальных контекстах.
В классической механике время было числом, характеризующим положение точки на ее траектории. Но на глобальном уровне время может иметь и другое значение. При виде ребенка мы можем более или менее точно угадать его возраст, хотя возраст не локализован в какой-либо части тела ребенка. Возраст - глобальное суждение. Часто утверждалось, что наука «опространствует время», придает времени пространственный характер. Мы же открываем возможность иного подхода. Рассмотрим какой-нибудь ландшафт и его эволюцию: растут населенные пункты, мосты, и дороги связывают различные районы и преобразуют их. Пространство приобретает временное измерение. По словам географа Б. Берри, мы приходим к «овремениванию пространства».
Но, возможно, наиболее важный прогресс заключается в том, что проблема структуры, порядка предстает теперь перед нами в иной перспективе. Как будет показано в гл. 8, с точки зрения механики, классической или квантовой, не может быть эволюции с однонаправленным временем. «Информация» в том виде, в каком она поддается определению в терминах динамикн, остается постоянной по времени. Это звучит парадоксально. Если мы смешаем две жидкости, то никакой «эволюции» при этом не произойдет, хотя разделить их, не прибегая к помощи какого-нибудь внешнего устройства, не представляется возможным. Наоборот, закон неубывания энтропии описывает перемешивание двух жидкостей как эволюцию к «хаосу», или «беспорядку», - к наиболее вероятному состоянию. Теперь мы уже располагаем всем необходимым для того, чтобы доказать взаимную непротиворечивость обоих описаний: говоря об информации или порядке, необходимо всякий раз переопределять рассматриваемые нами единицы. Важный новый факт состоит в том, что теперь мы можем установить точные правила перехода от единиц одного типа к единицам другого типа. Иначе говоря, нам удалось получить микроскопическую формулировку эволюционной парадигмы, выражаемой вторым началом термодинамики. Этот вывод представляется нам важным, поскольку эволюционная парадигма охватывает всю химию, а также существенные части биологии и социальных наук. Истина открылась нам недавно. Процесс пересмотра основных понятий, происходящий в настоящее время в физике, еще далек от завершения. Наша цель состоит вовсе не в том, чтобы осветить признанные достижения науки, ее стабильные и достоверно установленные результаты. Мы хотим привлечь внимание читателя к новым понятиям, рожденным в ходе научной деятельности, ее перспективам и новым проблемам. Мы отчетливо сознаем, что находимся лишь в самом начале нового этапа научных исследований. Перед нами - дорога, таящая в себе немало трудностей и опасностей. Б нашей книге мы лишь излагаем все проблемы такими, какими они представляются нам сейчас, отчетливо сознавая несовершенство и неполноту наших ответов на многие вопросы.
Эрвин Шредингер написал однажды, к возмущению многих философов науки, следующие строки:
«...Существует тенденция забывать, что все естественные науки связаны с общечеловеческой культурой и что научные открытия, даже кажущиеся в настоящий момент наиболее передовыми н доступными пониманию немногих избранных, все же бессмысленны вне своего культурного контекста. Та теоретическая наука, которая не признает, что ее построения, актуальнейшие и важнейшие, служат в итоге для включения в концепции, предназначенные для надежного усвоения образованной прослойкой общества и превращения в органическую часть общей картины мира; теоретическая наука, повторяю, представители которой внушают друг другу идеи на языке, в лучшем случае понятном лишь малой группе близких попутчиков, - такая наука непременно оторвется от остальной человеческой культуры; в перспективе она обречена на бессилие и паралич, сколько бы ни продолжался и как бы упрямо ни поддерживался этот стиль для избранных, в пределах этих изолированных групп, специалистов»18.
Одна из главных тем нашей книги - сильное взаимодействие проблем, относящихся к культуре как целому.
Мы увидим, что проблемы времени находятся в самом центре современной науки. Возникновение новых структурных элементов, необратимость принадлежат к числу вопросов, над решением которых билось не одно поколение философов. Пыне, когда история, в каком бы аспекте - экономическом, демографическом или политическом - мы ее ни рассматривали, развивается с неслыханной быстротой, новые проблемы н новые интересы вынуждают нас вступать в новые диалоги, искать новые связи.
Известно, что прогресс науки довольно часто описывают как отрыв от конкретного опыта, как подъем на все более высокий уровень абстракции, воспринимаемый со все большим трудом. Мы считаем, что такого рода интерпретация прогресса науки является не более чем отражением на эпистемологическом уровне исторической ситуации, в которой оказалась классическая наука, следствием ее неспособности включить в свою теоретическую схему обширные области взаимоотношений между человеком и окружающей средой.
Мы отнюдь не сомневаемся в том, что развитие научных теорий сопряжено с восхождением на все более высокие ступени абстракции. Мы лишь утверждаем, что концептуальные инновации, возымевшие решающее значение в развитии науки, отнюдь не обязательно были связаны с восхождением по лестнице абстракций. Новое открытие времени уходит корнями и в собственно историю естественных наук, и в тот социальный контекст, в котором находится современная наука. Открытие нестабильных элементарных частиц или подтверждение данными наблюдений гипотезы расширяющейся Вселенной, несомненно, являются достоянием внутренней истории естественных наук, но общий интерес к неравновесным ситуациям, к эволюционирующим системам, по-видимому, отражает наше ощущение того, что человечество в целом переживает сейчас некий переходный период. Многие результаты, приводимые в гл. 5 и 6, например сведения о периодических химических реакциях, могли бы быть открыты много лет назад, но исследование такого рода неравновесных проблем было подавлено культурным и идеологическим контекстом того времени.
Мы сознаем, что наше утверждение о способности
естественных наук тонко реагировать на культурную среду противоречит традиционной концепции науки. Согласно традиционным взглядам, наука развивается, освобождаясь от устаревших форм понимания природы, самоочищаясь в ходе процесса, который можно сравнить с «возвышением» разума. Но отсюда не так уж далеко до вывода о том, что наука - удел немногих избранных, живущих вдали от мира и не ведающих земных забот. Такое идеальное сообщество ученых, согласно традиционным взглядам, должно быть защищено от давления со стороны общества, его потребностей и запросов. Научный прогресс должен был бы тогда быть по существу автономным процессом, в который любое «внешнее» воздействие, например участие ученых в какой-либо культурной, социальной или экономической деятельности, вносило бы лишь возмущение или вызывало досадную задержку.
Такого рода идеал абстракции - полная отрешенность ученого от реального мира - находит верного союзника еще в одном идеале, на этот раз относящемся К призванию «истинного» исследователя, - его стремлении найти пристанище от превратностей «мирской суеты». Эйнштейн дает развернутое описание типа ученого, который удостоился бы милости «ангеля господня», посланного на Землю с миссией изгнать из «храма науки» всех «недостойных» (правда, остается не ясным, в каком именно смысле недостойные «недостойны»):
«Большинство из них - люди странные, замкнутые, уединенные; несмотря на эти общие черты, они в действительности сильнее разнятся друг от друга, чем изгнанные.
Что привело их в храм?... Одно из наиболее сильных побуждений, ведущих к искусству и науке, - это желание уйти от будничной жизни с ее мучительной жесткостью и безутешной пустотой, уйти от уз вечно меняющихся собственных прихотей. Эта причина толкает людей с тонкими душевными струнами от личных переживаний в мир объективного видения и понимания. Эту причину можно сравнить с тоской, неотразимо влекущей горожанина из шумной и мутной окружающей среды к тихим высокогорным ландшафтам, где взгляд далеко проникает сквозь неподвижный чистый воздух и наслаждается спокойными очертаниями, которые кажутся предназначенными для вечности.
Но к этой негативной причине добавляется и позитивная. Человек стремится каким-то адекватным способом создать в себе простую и ясную картину мира для того, чтобы оторваться от мира ощущений, чтобы в известной степени попытаться заменить этот мир созданной таким образом картиной
Несовместность аскетической красоты недостижимого идеала науки, с одной стороны, и мелочной суеты повседневной жизни, так верно подмеченной Эйнштейном, с другой, усиливается под влиянием еще одной несовместности явно маиихейского толка - несовместимости науки и общества, или, точнее, свободной творческой деятельности человека и политической власти, В этом случае научными изысканиямн следовало бы заниматься не узкому кругу ученых-отшельников и не в храме, а в неприступной крепости или даже в сумасшедшем доме, как это происходит, например, в пьесе Дюрренматта «Физики». Трое физиков, размышляющих над путями и средствами развития своей науки и озабоченные тем, как оградить человечество от ужасных последствий использования политиками плодов научного развития в своих корыстных целях, приходят к выводу, что единственно возможным является путь, уже избранный одним из них: все трое решают притвориться сумасшедшими и скрыться от общества в частном санатории для душевнобольных. В конце пьесы выясняется, что и это последнее убежище - не более чем иллюзия. Владелица санатория, неусыпно следившая за своим пациентом физиком Мёбиусом, похитила его открытие и захватила власть, обеспечивающую ей мировое господство.
Пьеса Дюрренматта приводит к третьей концепции научной деятельности: развитие науки осуществляется путем сведения сложности реального мира к скрытой за ней простоте. В стенах частного санатория для душевнобольных физик Мёбиус пытается утаить, что ему удалось успешно решить проблему гравитации, построить единую теорию элементарных частиц и, наконец, сформулировать Принцип Универсального Открытия - источник абсолютной власти. Разумеется, стремясь наиболее полно раскрыть замысел своей пьесы, Дюрренматт упрощает ситуацию, однако и общее мнение сходится на том, что жрецы «храма науки» заняты не больше не меньше, как поисками «формулы Вселенной». Человек науки, которого молва обычно рисовала как аскета, становится теперь кем-то вроде фокусника, человеком, занимающим особое положение, потенциальным обладателем ключа ко всем природным явлениям, всемогущим (по крайней мере потенциально) носителем беспредельного знания. Подобное представление о человеке науки вновь возвращает нас к поднятой ранее проблеме: только в простом мире (в частности, в мире классической науки, где сложность лишь скрывает лежащую в основе всего простоту) может существовать такая форма знания, которая дает универсальный ключ ко всем без исключения явлениям природы.
Одна из проблем нашего времени состоит в преодолении взглядов, стремящихся оправдать и усилить изоляцию научного сообщества. Между наукой и обществом необходимо устанавливать новые каналы связи. Именно в этом духе написана наша книга. Мы все хорошо знаем, что современный человек в беспрецедентных масштабах изменяет окружающую среду, создавая, по словам Сержа Московией, «новую природу»21. Но для того чтобы понять мир, сотворенный руками человека, нам необходима наука, которая выполняет миссию не только послушного орудия внешних интересов и не является раковой опухолью, безответственно растущей на субстрате общества.
Две тысячи лет назад Чжуан-цзы** написал следующие строки:
«Как безостановочно вращается небо! С каким постоянством покоится Земля! Не ведут ли между собой соперничества за место Солнце и Луна? Есть ли кто-нибудь предержащий власть над всем этим и правящий всем? Кто первопричина всего и кто без устали и напряжения поддерживает все? Не существует ли тайного механизма, вследствие которого все в мире не может быть ничем иным, кроме того, что оно есть?»22.
Мы считаем, что находимся на пути к новому синтезу, новой концепции природы. Возможно, когда-нибудь нам удастся слить воедино западную традицию, придающую первостепенное значение экспериментированию и количественным формулировкам, и такую традицию, как китайская, с ее представлениями о спонтанно изменяющемся самоорганизующемся мире. В начале введения мы привели слова Жака Моно об одиночестве человека во Вселенной. Вывод, к которому он приходит, гласит:
«Древний союз [человека и природы] разрушен. Человек наконец сознает свое одиночество в равнодушной бескрайности Вселенной, из которой он возник по воле случая»23.
Моно, по-видимому, прав. Древний союз разрушен до основания. Но мы усматриваем свое предназначение не в том, чтобы оплакивать былое, а в том, чтобы в необычайном разнообразии современных естественных наук попытаться найти путеводную нить, ведущую к какой-то единой картине мира. Каждый великий период в истории естествознания приводит к своей модели природы. Для классической науки такой моделью были часы, для XIX в. - периода промышленной революции - паровой двигатель. Что станет символом для нас? Наш идеал, по-видимому, наиболее полно выражает скульптура - от искусства Древней Индии или Центральной Америки доколумбовой эпохи до современного искусства. В некоторых наиболее совершенных образцах скульптуры, например в фигуре пляшущего Шивы или в миниатюрных моделях храмов Герреро, отчетливо ощутим поиск трудноуловимого перехода от покоя к движению, от времени остановившегося к времени текущему. Мы убеждены в том, что именно эта конфронтация определяет неповторимое своеобразие нашего времени.
ЧАСТЬ ПЕРВАЯ. ИЛЛЮЗИЯ УНИВЕРСАЛЬНОГО
Глава 1. ТРИУМФ РАЗУМА
1. Новый Моисей
Кромешной тьмой был мир окутан,
И в тайны естества наш взор не проникал,
Но Бог сказал: «Да будет Ньютон!» И свет над миром воссиял*.
Нет ничего странного в том, что эпитафия Поупа выдержана в столь возвышенном стиле. В глазах Англии XVIII в. Ньютон был «новым Моисеем», которому бог явил свои законы, начертанные на скрижалях. Поэты, архитекторы и скульпторы предлагали проекты величественных монументов, вся английская нация торжественно отмечала небывалое событие: человек впервые открыл язык, на котором говорит (и которому подчиняется) природа.
Не в силах устоять пред разумом Ньютона, Природа с радостью открыла все ему,
Пред математикой склонив свою главу И силу опыта признав, как власть закона.
Этика и политика черпали в теории Ньютона материал, которым «подкрепляли» свои аргументы. Например, автор приведенного выше четверостишия Дезагулье усматривал в ньютоновской картине мироздания образец политического устройства общества. Конституционную монархию он считал наилучшей из возможных форм правления, поскольку власть короля, как и власть Солнца, умеряется законами.
Как взгляд владыки ловят царедворцы, Кружат так шесть миров вкруг Солнца. Ему подвластно их движенье, Изогнут путь их силой притяженья. Власть Солнца смягчена законами Природы: Мирами правит, не лишая их свободы.
Хотя сам Ньютон никогда не вторгался в область морали и этики, он не сомневался в универсальном характере законов, изложенных в его «Математических началах натуральной философии». «Природа весьма согласна и подобна в себе самой»*, - утверждал Ньютон в Вопросе 31 своей «Оптики». Это весьма сильно эллиптическое утверждение претендует на многое. Горение, ферментация, тепло, силы сцепления, магнетизм... Не существует ни одного природного явления, которое не было вызвано силами притяжения и отталкивания, т. е. теми же действующими силами, что и движение небесных светил и свободно падающих тел.
Став еще при жизни почти национальным героем, Ньютон примерно столетие спустя при могучей поддержке авторитета Лапласа превратился в символ научной революции в Европе. Астрономы взирали на небо, где безраздельно царила математика. Ньютоновская система успешно преодолела все препятствия на своем пути. Более того, она проложила путь математическому методу, позволившему учесть все наблюдаемые отклонения в движениях планет и даже использовать их для вывода о существовании еще неизвестной планеты. Предсказание планеты Нептун явилось своего рода освящением предсказательной силы, присущей ньютоновской картине мироздания.
К концу XIX в. имя Ньютона стало нарицательным для обозначения всего образцового. Вместе с тем появились разноречивые интерпретации ньютоновского метода. Одни усматривали в нем своего рода эталон количественного экспериментирования, результаты которого допускают описание на языке математики. Для них химия обрела своего Ньютона в лице Лавуазье, положившего начало систематическому применению весов в химии. Это был решающий шаг в становлении количественной химии, избравшей закон сохранения массы своей нитью Ариадны. По мнению других стратегия Ньютона состояла в вычленении некоторого центрального твердо установленного и надлежаще сформулированного факта и в последующем использовании его как основы дедуктивных построений относительно данного круга явлений. С этой точки зрения гений Ньютона заключался в ньютоновском прагматизме. Ньютон не пытался объяснить гравитацию - существование всемирного тяготения было принято Ньютоном как неоспоримый факт. Аналогичным образом любая другая дисциплина должна строиться таким образом, чтобы за ее исходную точку был принят некоторый центральный необъяснимый факт. Ободренные авторитетом Ньютона медики сочли возможным обновить виталистскую концепцию и говорить о «жизненной силе» sui generis, использование которой придало бы описанию жизненных явлений столь желанную последовательность и систематичность. Этой же цели призвано служить сродство - особая, сугубо химическая сила, якобы проявляющаяся при взаимодействии молекул.
Некоторые «истинные ньютонианцы», стремясь воспрепятствовать неудержимому росту числа различных «сил», призванных объяснить то или иное явление природы, провозгласили было вновь универсальность всемирного тяготения, или гравитации, как единого объяснения всех явлений, но было слишком поздно. Ныне термин «ньютонианский» (или «ньютоновский») применим ко всему, что имеет отношение к системе законов, равновесию и, более того, ко всем ситуациям, в которых естественный порядок, с одной стороны, и моральный, социальный и политический, с другой, допускают описание с помощью единой всеобъемлющей гармонии. Романтические философы даже обнаруживали в ньютоновской Вселенной волшебный мир, одухотворенный силами природы. Более «ортодоксальные» физики усматривали в ньютоновской картине мироздания механический мир, подчиняющийся математическим законам. Для позитивистов ньютоновская модель символизировала успех процедуры, рецепта, подлежащего отождествлению с самим определением науки3.
Все остальное - не более чем изящная словесность (причем зачастую словесность ньютоновская): гармония, безраздельно царящая в мире звезд, избирательное сродство и столь же избирательная враждебность, порождающие видимость «общественной жизни» химических соединений, представали как явления, распространяющиеся и на человеческое общество. Неудивительно поэтому, что тот период казался золотым веком классической науки.
Ньютоновская наука и поныне занимает особое место. Некоторые из введенных ею основных понятий получили полное признание н сохранились до наших дней, выдержав все мутации, которые претерпело естествознание со времен Ньютона. Не подлежит сомнению, однако, что золотой век классической науки миновал, а вместе с ним исчезла и уверенность в том, что ньютоновская рациональность, несмотря на значительно расходящиеся между собой интерпретации, может быть приемлемой основой для нашего диалога с природой.
Центральная тема первой части нашей книги - триумф ньютонианства, непрестанное расширение сферы научных исследований на все новые и новые области, позволившее распространить ньютоновское мышление до нашего времени. Мы расскажем также о тех сомнениях и ожесточенных баталиях, которые породил этот триумф. Ныне мы начинаем более отчетливо видеть пределы ньютоновской рациональности. Возникает новая, более последовательная концепция науки и природы. Эта новая концепция прокладывает путь новому объединению знания и культуры.
2. Дегумаиизованный мир
...От единого зренья нас, Боже, Спаси, и от сна Ньютонова тоже
Вряд ли найдется лучшая иллюстрация нестабильности положения, занимаемого наукой в общей системе культуры, чем вводная статья, опубликованная в трудах семинара ЮНЕСКО по проблемам отношений науки и культуры:
«Более чем за одно столетие сектор научной деятельности разросся в окружающем его культурном пространстве настолько, что угрожает в недалеком будущем вытеснить всю культуру. Одни склонны считать подобную опасность иллюзорной и объясняют наметившуюся тенденцию высокими темпами развития науки, уповая на то, что силовые линии культуры рано или поздно окажут свое действие и вновь поставят науку на службу человеку. Другие полагают, что триумф, одержанный наукой
за последние десятилетия, дает ей право занимать господствующее положение в современной культуре. Более того, культура, по их мнению, заслуживает дальнейшего развития лишь постольку, поскольку она может быть передана посредством научного аппарата. Третьим, устрашенным мрачной перспективой превращения отдельного человека и всего общества в целом в послушных марионеток науки, видится призрак грядущей катастрофы культуры».
В приведенном нами отрывке наука представлена как раковая опухоль на теле культуры: дальнейший рост науки угрожает разрушить культурную жизнь общества. Вопрос стоит весьма остро: можем ли мы взять контроль над наукой в свои руки и направлять ее развитие в нужное русло или нам уготована судьба рабов науки? Всего лишь за каких-нибудь полтора века наука претерпела головокружительное падение, превратившись из источника вдохновения западноевропейской культуры в смертельную угрозу для нее. Наука не только представляет опасность для материального существования человека, но и в более тонком плане угрожает разрушить традиции и опыт, глубоко ускоренившиеся в нашей культурной жизни. Столь тяжкое обвинение выдвигается не только против технологических последствий того или иного научного достижения, но и против самого «духа науки».
Но независимо от того, относятся ли выдвинутые обвинения к глобальному скептицизму, источаемому научной культурой, или к частным следствиям из научных теорий, в наше время утверждение о том, что наука расшатывает саму основу нашего мира, звучит довольно часто. То, что на протяжении поколений было источником радости и наслаждения, вянет от прикосновения науки. Все, к чему прикасается наука, дегуманизуется.
Как ни странно, идея о том, что научный прогресс выступает в роли рокового разрушителя волшебных чар, нашла горячую поддержку не только среди критиков науки, но я среди тех, кто защищает и даже прославляет ее. Например, историк Гиллиспи в своей книге «Острие объективности» выражает сочувствие тем, кто критикует науку и не оставляет попыток притупить «режущую кромку объективности»:
«Попытки возродить субъективный подход к природе не могут не волновать. Его бренными останками, равно
как и благими намерениями, устлан весь путь, пройденный научной, и лишь кое-где в таких глухих уголках, как лысенковщина или антропософия, он сохранился в первозданном виде. В такого рода пережитках запечатлены непрестанные попытки избежать последствий наиболее характерной для западного человека и успешной кампании, обреченной, насколько можно судить, на полную и окончательную победу. Вряд ли найдется тончайший нюанс в настроении от глубокого отчаяния до героического воодушевления, который не возбуждала бы, как любая вера перед лицом неминуемого, романтическая натурфилософия. В своем наиболее отталкивающем проявлении такие настроения порождают сентиментальное или вульгарное неприятие разума. В наиболее возвышенном проявлении они являются движущей пружиной натуралистической и морализующей науки Дидро, персонификации природы Гёте, поэзии Вордсворта и философии Альфреда Норта Уайтхеда или любого другого мыслителя, который хотел бы найти в науке место для нашей качественной и эстетической оценки природы. Это наука тех, кто, будь их воля, превратил бы в ботанику великолепие цветения и в метеорологию красоту закатов»5.
Итак, наука приводит к трагическому метафизическому выбору. Человек вынужден отдать предпочтение одной из альтернатив н либо поддаться сулящему вновь обрести потерянную было уверенность, но иррациональному искушению видеть в природе гарантию человеческих ценностей, либо усматривать в ней знак, указывающий на существование фундаментальной взаимосвязи явлений и верность рациональности, изолирующей его в безмолвном мире.
К лейтмотиву мира, переставшего вызывать благоговейное поклонение, примешивается отзвук другого лейтмотива - господства над окружающим миром. Миром, перед которым не испытываешь благоговения, управлять гораздо легче. Любая наука, исходящая из представления о мире, действующем по единому теоретическому плану и низводящем неисчерпаемое богатство и разнообразие явлений природы к унылому однообразию приложений общих законов, тем самым становится инструментом доминирования, а человек, чуждый окружающему его миру, выступает как хозяин этого мира.
В последние десятилетия развенчание окружающего
нас мира принимало различные формы. Систематическое изучение многообразных проявлений антинауки выходит за рамки нашей книги. О реакции западной мысли на удивительный триумф ньютоновской рациональности мы расскажем более подробно в гл. 3, а пока лишь заметим, что в настоящее время наблюдается сдвиг во всеобщем отношении к природе, основанный на широко распространенном, но, по нашему мнению, ошибочном убеждении в существовании непреодолимого антагонизма между наукой и «натурализмом». Формы, которые приняла в последние годы критика науки, мы продемонстрируем (по крайней мере частично) на трех примерах: критики Хайдеггера, чья философия весьма привлекательна для современного мышления, Артура Кёстлера и выдающегося историка науки Александра Койре.
Мартин Хайдеггер направляет острие своей критики в само сердце научного исследования, основной побудительный мотив которого Хайдеггер усматривает в достижении перманентной цели - покорении природы. В соответствии с этим Хайдеггер утверждает, что научная рациональность является итоговым выражением того, что неявно присутствовало в науке с античных времен, а именно: воли к покорению, проявляющейся в любом рациональном обсуждении или предприятии, элементе насилия, скрытом во всем позитивном, и коммуникабельном знании. Особое значение Хайдеггер придает тому, что он называет технологическим и научным «остовом» (Gestell)6, служащим общей основой функционирования человека н окружающего мира.
Хайдеггер не приводит подробного анализа какого-нибудь конкретного технологического (или научного) продукта или процесса. Хайдеггер подвергает критике самую сущность технологии - сторону, с которой нас интересует вещь. Любая теория является, с его точки зрения, составной частью реализации генерального плана, образуемого западной историей. То, что мы называем научной «теорней>, представляет, по Хайдеггеру, не более чем способ вопрошания вещей, с тем чтобы подчинить их себе. Ученый, как и технолог, - всего лишь игрушка в руках воли к власти, замаскированной под жажду знания: первое же приближение ученого к объектам исследования означает, что те подвергаются систематическому насилию.
«Было бы неверно называть современную физику экспериментальной потому, что при вопрошании природы она использует экспериментальные устройства. Правильнее противоположное утверждение, и вот почему: физика, уже как чистая теория, требует, чтобы природа проявила себя в предсказуемых силах; она ставит свои эксперименты с единственной целью задать природе вопрос: следует ли та, и если следует, то каким именно образом, схеме, предначертанной наукой»7.
Хайдеггера нисколько не волнует, например, что загрязнение промышленными отходами погубило в Рейне все живое. Хайдеггера интересует лишь, что река Рейн поставлена на службу человеку.
«На Рейне воздвигнута плотина гидроэлектростанции. Она повышает напор вод великой реки, чтобы тот мог вращать колеса турбины... Гидроэлектростанция не «пристроена» к Рейну, как старинный деревянный мост, веками соединяющий один берег с другим. Наоборот, река встроена в электростанцию. Рейн есть то, чем он теперь является в качестве реки, а именно поставщиком гидравлического напора, благодаря существованию электростанции»8.
Старинный мост через Рейн представляет в глазах Хайдеггера ценность не как свидетельство таланта, подкрепленного опытом возводивших его мастеров, кропотливых и тщательных наблюдений, а лишь потому, что мост «не использует» реку.
Критика Хайдеггера, воспринимающая как угрозу самый идеал позитивного коммуникабельного знания, эхом вторит уже знакомым мотивам движения против науки, о которых мы упоминали во введении. Но идея нерасторжимой связи между наукой и стремлением доминировать проходит сквозь некоторые, казалось бы, весьма различные оценки современной ситуации. Например, в работе под весьма красноречивым названием «Наступление золотого века» Гюнтер Стент утверждает, что наука в наше время достигла пределов своих возможностей. Мы вплотную приблизились к точке, где отдача иссякает, вопросы, задаваемые нами различным объектам с целью подчинить их своей власти, все более усложняются и утрачивают всякий интерес. Выход на этот рубеж означает конец прогресса, но вместе с тем предоставляет человечеству удобный случай для того, чтобы прекратить безумные усилия, закончить вековую схватку
с природой и принять мир, статичный и комфортабельный. Мы намереваемся показать, что относительная разобщенность научного познания некоторого объекта и возможность овладения им, отнюдь не свидетельствуя об исчерпании науки, указывают на поистине неисчерпаемое множество новых перспектив и проблем. Научное понимание окружающего нас мира только начинается. Существует еще одно представление о науке, которое в принципе, по нашему мнению, может нанести ей значительный ущерб, - преклонение перед таинственной наукой, способной с помощью хитроумных рассуждений, недоступных простым смертным, привести к выводам, которые, словно по мановению волшебной палочки, обнаружат несостоятельность общепринятой трактовки таких фундаментальных понятий, как время, пространство, причинность, разум или материя. Такого рода «таинственная наука», способная потрясти своими выводами основу любой традиционной концепции, в какой-то мере поощрялась «откровениямн> теории относительности и квантовой механики. Не подлежит сомнению, что некоторые из наиболее впечатляющих достижений физики в относительно недавнем прошлом, такие, как предложенная Эйнштейном интерпретация гравитации как кривизны пространства или античастицы Дирака, поколебали, казалось бы, окончательно сложившиеся концепции. Таким образом, налицо весьма тонкое равновесие между готовностью вообразить науку всесильной, способной на любые свершения, и своего рода земным реализмом. В настоящее время это равновесие заметно смещается в сторону возрождения мистицизма в среде представителей печати и даже в самой науке, особенно среди специалистов по космологии10. Процитируем Кёстлера:
«Нам приходилось слышать целый хор Нобелевских лауреатов по физике, утверждавших, что материя мертва, причинность мертва, детерминизм мертв. Если это действительно так, устроим усопшим похороны под реквием электронной музыки. Настало время извлечь урок из постмеханистической науки XX в. и выбраться из смирительной рубашки, надетой на наши философские взгляды материализмом XIX в. Парадоксально, но если бы наши философские взгляды находились на уровне современной науки вместо того, чтобы отставать от нее на столетие, то мы давно освободились бы от этой смирительной рубашки... Но, коль скоро допущенная нами ошибка осознана, мы могли бы острее ощущать те явления вокруг нас, которые ранее были вынуждены игнорировать из-за одностороннего пристрастия к физической науке, могли бы более чутко реагировать на росток, пробивающийся сквозь обломки рухнувшего здания причинности, с большим вниманием относиться к стечению событий, включить паранормальные явления в нашу концепцию нормальности и отдавать себе ясный отчет в том, что мы живем в «стране слепых»11.
Мы не хотим априори осуждать или отвергать любые взгляды. Даже в заведомо фантастических утверждениях из числа тех, которые нам приходится слышать, может оказаться зерно истины. Тем не менее мы считаем, что прыжки в иррациональное были бы слишком простым выходом из конкретной сложности окружающего нас мира. Мы отнюдь не тешим себя надеждой на то, что из «страны слепых» нам удастся выбраться быстро, поскольку концептуальная слепота - далеко не главная причина, по которой остаются нерешенными проблемы и противоречия нашего общества.
Не соглашаясь с той или иной критикой или искажениями науки, мы отнюдь не отвергаем всякую критику науки вообще. В качестве примера сошлемся на позицию Александра Койре, внесшего немалый вклад в понимание развития современной науки. Анализируя значение и следствия ньютоновского синтеза, Койре пишет следующее:
«Но есть и нечто такое, за что ответственность может быть возложена на Ньютона или, точнее, не на одного Ньютона, а на всю современную науку, - раскол нашего мира на два чуждых мира. Я уже упоминал о том, что современная наука разрушила барьеры, отделявшие небо от Земли, объединила и унифицировала Вселенную. Все это так. Но я упоминал и о том, что, опрокидывая барьеры, наука подменяла наш мир качества и чувственного восприятия, мир, в котором мы живем, любим и умираем, другим миром - миром количества, воплощенной геометрии, миром, в котором, хотя он и вмещает в себя все, нет места для человека. Так мир науки - реальный мир - стал отчужденным и полностью оторванным от мира жизни. Наука не в состоянии не только объяснить этот мир, но даже оправдаться, назвав его «субъективным:».
Нельзя не признать, однако, что практика ежедневно (и чем дальше, тем чаще) приводит оба мира в соприкосновение. Что же касается теории, то их разделяет бездонная пропасть.
Существование двух миров означает существование двух истин. Не исключено, однако, и другое толкование - истины вообще не существует.
Трагедия современного разума, «разгадавшего загадку Вселенной», состоит в том, что одну загадку он заменил другой - загадкой самого себя12.
В выводах Койре звучит та же нота, которая отчетливо слышна у Паскаля и Моно, - трагическое ощущение отчужденности. Критика Койре ставит под сомнение не научное мышление, а классическую науку, в основе которой заложена ньютоновская перспектива. Перед нами не стоит прежняя дилемма трагического выбора между наукой, обрекающей человека на изоляцию в окружающем его мире, лишенном волшебного очарования, и антинаучными иррациональными протестами. Критика Койре нацелена не на пределы рациональности «смирительной рубашки>, а лишь на неспособность классической науки справиться с некоторыми фундаментальными аспектами окружающего нас мира.
Наша позиция в этой книге сводится к утверждению: наука, о которой говорит Койре, не является более нашей наукой, и отнюдь не потому, что нас ныне занимают новые, недоступные воображению объекты, более близкие к магии, чем к логике, а потому, что мы как ученые начинаем нащупывать свой путь к сложным процессам, формирующим наиболее знакомый нам мир - мир природы, в котором развиваются живые существа и их сообщества. Мы начинаем выходить за пределы того мира, который Койре называет «миром количества», и вступаем в «мир качества», а значит, и в мир становящегося, возникающего. Описанию перехода из одного мира в другой посвящены части I и II нашей книги. Мы считаем, что именно такой переход придает особую значимость и очарование переживаемому нами моменту истории науки. Не будет, по-видимому, преувеличением сказать, что наш период допустимо сравнивать с эпохой греческих атомистов или Возрождения, когда зарождался новый взгляд на природу. Но вернемся сначала к ньютоновской науке, бесспорно ставшей одним из величайших достижений в истории человечества.
3. Ньютоновский синтез
Что кроется за энтузиазмом современников Ньютона, их убеждением в том, что тайна мироздания, истина о природе наконец открыта? В ньютоновском синтезе сходятся несколько направлений человеческой мысли, истоки которых восходят, по-видимому, к самому началу цивилизации. Прежде всего это представление о науке как о способе воздействия на окружающий мир. Ньютоновская наука - наука активная. Одним из ее источников стали знания, накопленные средневековыми ремесленниками, строителями машин. Она дает средства для систематического воздействия на мир, для предсказания и изменения хода протекающих в природе процессов, созидания устройств и механизмов, способных обуздать и использовать на благо человека силы и материальные ресурсы природы.
В этом смысле современная наука может считаться прямым продолжением тех усилий, которые человек с незапамятных времен затрачивал на то, чтобы организовать для своих целей окружающий мир. О ранних этапах этой деятельности мы располагаем весьма скудными сведениями. Тем не менее, оглядываясь назад, мы можем достаточно достоверно оценить уровень знаний и навыков, необходимых для того, чтобы совершить неолитическую революцию, позволившую человеку постепенно начать организацию природной и социальной среды с помощью новой техники, предназначенной для эксплуатации природы и устройства общества. Неолитическая «техника», например виды домашних животных и культурных растении, выведенные с помощью отбора и гибридизации, гончарное производство, ткачество, металлургия, широко используется и поныне. На протяжении длительного периода наша социальная организация была основана на той же технике письма, геометрии, арифметики, которая понадобилась для того, чтобы организовать иерархически дифференцированные и наделенные структурой социальные группы неолитических городов-государств. Таким образом, мы не можем не признать непрерывность связи между неолитической техникой и наукой и промышленной революцией.
Современная наука значительно расширила круг древних изысканий, неуклонно повышая их интенсивность и непрестанно наращивая их темп. Однако этим"
далеко не исчерпывается значение науки в том смысле, какой был придан ей в ньютоновском синтезе.
Помимо многообразной техники, используемой в данном обществе, мы встречаем ряд верований и мифов, в которых предпринимаются попытки понять, какое место занимает человек в мире. Подобно мифам и космогоническим гипотезам, научная деятельность направлена прежде всего на то, чтобы понять природу мира, его структуру и место, занимаемое в нем человеком.
С нашей точки зрения, совершенно несущественно, что первые умозрительные построения досократиков были во многом заимствованы из мифа Гесиода о сотворении мира - начальном отделении неба от Земли, страсти, разжигаемой Эротом, рождении первого поколения богов и образовании дифференцированных космических сил, разладах и распрях, серии кровавых расправ и актов мести и, наконец, установлении стабильности при мудром правлении богини правосудия Дике. Для нас важно другое: на протяжении нескольких поколений досократики собирали, обсуждали и подвергали критическому разбору часть тех понятий, которые мы пытаемся ныне организовать в надежде понять отношения между явившимся, ставшим и становящимся, т. е. понять, как рождается порядок из первоначально недиффенцированной (по предположению) среды.
Почему однородное состояние теряет устойчивость? Почему потеря устойчивости приводит к спонтанной дифференциации? Почему вообще существуют вещи? Являются ли они хрупкими и бренными следствиями несправедливости, нарушения' статического равновесия между противоборствующими силами природы? Может быть, силы природы создают вещи и обусловливают их автономное существование - вечно соперничающие силы любви и ненависти, стоящие за рождением, ростом, увяданием и рассыпанием в прах? Является ли изменение не более чем иллюзией или, наоборот, проявлением неутихающей борьбы между противоположностями, образующими изменяющуюся вещь? Сводится ли качественное изменение к движению в вакууме атомов, отличающихся только по форме, или же атомы сами состоят из множества качественно различных «зародышей>, каждый из которых отличен от другого? Носит ли гармония мира математический характер? Являются ли числа ключом к природе?
Открытые пифагорейцами соотношения между высотой тона звучащей струны и ее длиной и поныне входят в наши теории. Математические схемы составили первый в истории Европы свод абстрактных рассуждений, которые могут быть сообщены любому мыслящему человеку и воспроизведены им. Грекам впервые удалось облечь дедуктивное знание в форму, придающую ему (разумеется, в определенных пределах) незыблемость, неподверженность колебаниям в зависимости от убеждений, надежд и пристрастий.
Наиболее важный аспект, общий для греческой мысли и современной науки, разительно контрастирующий с религиозно-мистической формой познания, заключается в придании особой значимости критическому анализу н проверке14.
О досократовской философии, получившей развитие в ионических полисах и колониях Magna Graecia (Beликой Греции), известно мало. Нам остается лишь строить более или менее правдоподобные предположения о том, какие отношения могли складываться между теоретическими построениями и космогоническими гипотезами и процветавшими в ионических полисах ремеслами и технологиями. Традиция утверждает, что в результате враждебной религиозной и социальной реакции философы были обвинены в атеизме и либо осуждены на изгнание, либо приговорены к смертной казни. Их ранний «призыв к порядку» может служить своего рода символом, олицетворяющим важность социальных факторов для зарождения и особенно развития концептуальных инноваций. Чтобы понять, на чем зиждется успех современной науки, нам необходимо также объяснить, почему ее основатели, как правило, подвергались формально отнюдь не беззаконным репрессиям, а их теоретический подход подавлялся в пользу той формы знания, которая больше соответствовала общественным чаяниям и убеждениям.
Насколько можно судить, со времен Платона и Аристотеля надлежащие ограничения были установлены и мысль оказалась направленной в русло социально приемлемого. В частности, было проведено различие между теоретическим мышлением и технологической деятельностью. Такие используемые нами и ныне слова, как «машина», «механический», «инженер», имеют сходное значение. Они относятся не к рациональному знанию, а к умению и целесообразности. Идея состояла не в том, чтобы изучать происходящие в природе процессы с целью их более эффективного использования, а в том, чтобы обхитрить природу, обмануть ее с помощью различных «машинных махинаций», т. е. включить в работу чудеса и эффекты, чуждые «естественному порядку» вещей. Области практических действий и рационального понимания природы были, таким образом, жестко разграничены. Архимеда почитали как инженера. Считалось, что его математические работы по изучению условий равновесия машин неприменимы к миру природы (по крайней мере в рамках традиционной физики). В отличие от сказанного ньютоновский синтез выражает последовательный союз между практической деятельностью н теоретическим познанием.
Нельзя не отметить и третий важный элемент, нашедший свое отражение в ньютоновской революции. Каждый из нас, вероятно, прочувствовал разительный контраст между ничем не нарушаемым покоем мира звезд и планет и эфемерным, вечно бурлящим земным миром. Как подчеркнул Мирча Элиаде, во многих древних цивилизациях пространство, где протекает жизнь простых смертных, обособлено от обители богов, мир разделен на обычное пространство, где все подвержено игре случая, имеет свой век и обречено в конечном счете на гибель, и священное пространство, где все исполнено высшего смысла, чуждо всякой случайности и вечио. Именно по таким признакам Аристотель противопоставил миру небесных светил мир подлунный. Эта противоположность имела решающее значение для оценки Аристотелем возможности количественного описания природы. Если движение небесных тел, рассуждал Аристотель, неизменно и по своей природе божественно, т. е. остается вечно тождественным самому себе, то оно должно допускать описание с помощью математических идеализации. Математическая точность и строгость не пристали подлунному миру. Неточности природных процессов подходит лишь приближенное описание.
Последователю Аристотеля интереснее знать, почему протекает процесс, чем уметь описывать, как тот протекает, или, скорее, для него один аспект неотделим от другого. Одним из главных источников аристотелевского мышления явилось наблюдение эмбрионального развития - высокоорганизованного процесса, в котором взаимосвязанные, хотя и внешне независимые события происходят, как бы подчиняясь единому глобальному плану. Подобно развивающемуся зародышу, вся аристотелевская природа построена на конечных причинах. Цель всякого изменения, если оно сообразно природе вещей, состоит в том, чтобы реализовать в каждом организме идеал его рациональной сущности. В этой сущности, которая в применении к живому есть в одно и то же время его окончательная, формальная и действующая причина, - ключ к пониманию природы. В указанном смысле «рождение современной науки> - столкновение между последователями Аристотеля и Галилея - есть столкновение между двумя формами рациональности16.
Галилей считал вопрос «почему», столь любезный сердцу любого последователя Аристотеля, весьма опасным при обращении к природе, по крайней мере для ученого. С другой стороны, сторонники аристотелевской науки считали взгляды Галилея крайним выражением иррационального фанатизма.
Итак, появление ньютоновской системы ознаменовало триумф новой универсальности: оно позволило унифицировать то, что до Ньютона казалось разрозненным и бессвязным.
4. Экспериментальный диалог
Мы уже упоминали об одном из наиболее существенных элементов современной науки: тесном союзе теории и практики, слиянии стремления структурировать мир и желании понять его.
Для того чтобы осуществить намерение познать мир вопреки убеждению эмпириков, отнюдь недостаточно с должным почтением относиться к наблюдаемым фактам: в некоторых вопросах, даже в описании механического движения, аристотелевскую физику было бы легче привести в соответствие с эмпирическими фактами. Открытый современной наукой экспериментальный диалог с природой подразумевает активное вмешательство, а не пассивное наблюдение. Перед учеными ставится задача научиться управлять физической реальностью, вынуждать ее действовать в рамках «сценария» как можно ближе к теоретическому описанию.
Исследуемое явление должно быть предварительно препарировано и изолировано, с тем чтобы оно могло» служить приближением к некоторой идеальной ситуации, возможно физически недостижимой, но согласующейся с принятой концептуальной схемой.
Рассмотрим описание системы блоков, ставшей классическим примером механической системы со времен' Архимеда, чьи рассуждения были распространены представителями современной науки на принцип действия всех простых машин. Обращает на себя внимание одно интересное обстоятельство: современное объяснение полностью исключает (как не имеющее отношения к. делу) именно то, что намеревалась объяснить аристотелевская физика. Если воспользоваться типичным примером, то речь шла об объяснении того, что камень «сопротивляется» усилиям лошади, тянущей его за веревку, и что сопротивление камня может быть «преодолено» тяговым усилием, передаваемым от лошади через систему блоков. В отличие от аристотелевской физики Галилей учит, что природу никогда и ни в чем-нельзя «преодолеть», Она ничего не делает «даром» и ее невозможно «обмануть». Нелепо думать, что с помощью какого-то замысловатого приспособления или хитроумной уловки нам удастся заставить природу производить дополнительную работу16. Поскольку работа, которую способна производить лошадь, остается одной, и той же как с блоками, так и без блоков, эффект от работы также один и тот же. Это замечание становится исходным пунктом механического объяснения, относящегося, как нетрудно видеть, к миру не реальному, а идеальному. В этом мире «новый» эффект - то, что» лошади все же удается сдвинуть камень, - имеет второстепенное значение, и сопротивление камня описывается лишь качественно в терминах трения н нагревания. Точному описанию поддается идеальная ситуация, в которой соотношение эквивалентности связывает причину- производимую лошадью работу - и следствие- перемещение камня. В этом идеальном мире лошадь может сдвинуть камень и без блоков. Единственное назначение системы блоков состоит в том, чтобы изменить способ передачи тягового усилия от лошади к камню. Вместо того, чтобы перемещать камень на расстояние L, равное расстоянию, проходимому лошадью, тянущей камень на веревке, лошади достаточно переместить камень на расстояние L/n, где п зависит от числа блоков. Подобно всем простым машинам, блоки являются пассивным устройством, способным передавать движение, но не производить его.
Мы видим, что экспериментальный диалог соответствует в высшей степени специфической процедуре. Природа, как на судебном заседании, подвергается с помощью экспериментирования перекрестному допросу именем априорных принципов. Ответы природы записываются с величайшей точностью, но их правильность Оценивается в терминах той самой идеализации, которой физик руководствуется при постановке эксперимента. Все остальное считается не информацией, праздной болтовней, вторичными эффектами, которыми можно пренебречь. Может случиться н так, что природа отвергнет рассматриваемую теоретическую гипотезу. Тем не менее и отвергнутая гипотеза продолжает использоваться как эталон для измерения следствий и значимости ответа на поставленный вопрос, каким бы ответ ни был. Именно на эту императивную манеру постановки вопросов природе ссылается Хайдеггер в своей аргументации против научной рациональности.
Для пас экспериментальный метод является поистине искусством, т. е. мы считаем, что в основе его лежат особые навыки и умение, а не общие правила. Будучи искусством, экспериментальный метод никогда не гарантирует успех, всегда оставаясь на милости тривиальности нли неверного суждения. Ни один методологический принцип не может исключить, например, риска зайти в тупик в ходе научного исследования. Экспериментальный метод есть искусство постановки интересного вопроса и перебора всех следствий, вытекающих из лежащей в основе его теоретической схемы, всех ответов, которые могла бы дать природа на выбранном экспериментатором теоретическом языке. Из конкретной сложности и многообразия явлений природы необходимо выбрать одно-единственное явление, в котором с наибольшей вероятностью ясно и однозначно должны быть воплощены следствия из рассматриваемой теории. Это явление затем надлежит абстрагировать от окружающей среды и «инсценировать> для того, чтобы теорию можно было подвергнуть воспроизводимой проверке, результаты и методы которой допускалн бы передачу любому заинтересованному лицу.
Хотя такого рода экспериментальная процедура с самого начала вызывала (и продолжает вызывать) серьезные нарекания, отвергалась эмпириками и подвергалась острой критике со стороны представителей других течений философской и естественнонаучной мысли, не без основания сравнивавшими ее с пыткой природы, с допросом на дыбе, она пережила все модификации теоретического содержания научных описаний и в конечном счете определила новый метод исследования, введенный современной наукой.
Экспериментальная процедура может становиться и орудием чисто теоретического анализа. Эта ее разновидность известна под названием «мысленного эксперимента»: физик мысленно представляет себе экспериментальные ситуации, целиком подчиняющиеся теоретическим принципам, и тем самым получает возможность осознать, к каким следствиям приводят выбранные им в данной ситуации теоретические принципы. Мысленные эксперименты сыграли решающую роль в работах Галилея. Ныне они находятся в самом центре исследования последствий концептуальных переворотов в современной физике, произведенных теорией относительности и квантовой механикой. Один из наиболее знаменитых мысленных экспериментов был предложен Эйнштейном (так называемый «поезд Эйнштейна»), Представим себе наблюдателя, едущего в поезде н измеряющего скорость света, испускаемого фонарями на обочине дороги, т. е. движущегося со скоростью с в системе отсчета, относительно которой поезд движется со скоростью v. По классической теореме сложения скоростей наблюдатель, едущий в поезде, должен был бы приписать свету, распространяющемуся в направлении движения поезда, скорость с-v. Однако классические рассуждения содержат явную нелепость, выявить которую и должен предложенный Эйнштейном мысленный эксперимент. В теории относительности скорость света выступает как универсальная постоянная природы. В любой иперциальной системе отсчета скорость света всегда одна и та же. С тех пор и поныне «поезд Эйнштейна» безостановочно движется, помогая Исследовать физические следствия глубоких перемен в основах науки, вызванных специальной теорией относительности.
Экспериментальный метод занимает центральное место в диалоге с природой, начатом современной наукой. Представление о природе, вопрошаемой в такой манере, разумеется, сильно упрощено, а порой и искажено. Однако это отнюдь не лишает экспериментальный метод способности опровергать подавляющее большинство выдвигаемых нами гипотез. Эйнштейн говорил, что природа отвечает «нет» на большинство задаваемых ей вопросов н лишь изредка от нее можно услышать более обнадеживающее «может быть». Ученый не может действовать так, как ему заблагорассудится, и заставить природу говорить лишь то, что ему хочется услышать. Строя радужные надежды и ожидания, он не может рассчитывать (по крайней мере если говорить о глобальной тенденции) на «поддержку» со стороны природы. В действительности ученый подвергает себя тем большему риску и ведет тем более опасную игру, чем более искусную тактику он выбирает, стремясь отрезать природе все пути к отступлению, припереть ее к стенке17. Каков бы ни был ответ природы - «да» или «нет», - он будет выражен на том же теоретическом языке, на котором был задан вопрос. Однако язык этот не остается неизменным, он претерпевает сложный процесс исторического развития, учитывающий прошлые ответы природы и отношения с другими теоретическими языками. Кроме того, в каждый исторический период научные интересы меняются и возникают новые вопросы. Все это приводит к сложной взаимосвязи между специфическими правилами научной игры (в частности, экспериментальным методом ведения диалога с природой, налагающим наиболее жесткие ограничения на игру) и культурной сетью, к которой, иногда неосознанно, принадлежит ученый.
Мы считаем экспериментальный диалог неотъемлемым достижением человеческой культуры. Он дает гарантию того, что при исследовании человеком природы последняя выступает как нечто независимо существующее. Экспериментальный метод служит основой коммуникабельной и воспроизводимой природы научных результатов. Сколь бы отрывочно ни говорила природа в отведенных ей экспериментом рамках, высказавшись однажды, она не берет своих слов назад: природа никогда не лжет.
5. Миф у истоков иаук
Основатели современной науки прозорливо усматривали в диалоге между человеком и природой важный шаг к рациональному постижению природы. Но претендовали они на гораздо большее. Галилей и те, кто пришел после него, разделяли убеждение в том, что наука способна открывать глобальные истины о природе. По их мнению, природа не только записана на математическом языке, поддающемся расшифровке с помощью надлежаще поставленных экспериментов, но и сам язык природы единствен. Отсюда уже недалеко до вывода об однородности мира н, следовательно, доступности постижения глобальных истин с помощью локального экспериментирования. Простейшие явления, изучаемые наукой, прн таких взглядах становятся ключом к пониманию природы в целом. Сложность природы была, провозглашена кажущейся, а разнообразие природы - укладывающимся в универсальные истины, воплощенные для Галилея в математических законах движения.
Убеждение основателей современной науки оказалось необычайно живучим и сохранилось на века. В блестящем цикле лекций, прочитанных Ричардом, Фейнманом несколько лет назад по приглашению компании Би-би-си, он сравнивал природу с «огромной шахматной доской, на которой играют в шахматы или шашки»18. Сложность природы Фейнман так же, как и его предшественники, провозгласил лишь кажущейся; каждый ход подчиняется простым правилам. Не исключено, что современной науке в ее повседневной практике такое убеждение необходимо, ибо без него она не могла бы открывать глобальные истины. Оно придает весьма большое значение экспериментальному методу и в какой-то мере вдохновляет его. Вполне возможно, что революционная концепция мира, столь же всеобъемлющая, как и «биологическая» концепция аристотелевского мира, была необходима для избавления от ига традиции, для придания поборникам экспериментирования силы убеждения и аргументации, позволившим им отстоять свои взгляды перед лицом ранее сложившихся форм рациональности. Возможно, метафизическое убеждение было необходимо для претворения знаний ремесленника и строителя машин в новый метод рационального исследования природы. Нам остается лишь строить более или менее правдоподобные предположения относительно того, какое значение имеют следствия из существования такого рода «метафизического убеждения для объяснения исторической последовательности принятия первых достижений современной науки и их включения в социальный контекст. Мы не будем вдаваться в этот весьма спорный вопрос и ограничимся лишь несколькими замечаниями самого общего характера с единственной целью - привлечь внимание к проблеме науки, прогресс которой был воспринят одними как триумф разума, а другими как разочарование, как горькое открытие роботоподобной тупости природы.
Трудно отрицать фундаментальное значение социально-экономических факторов (в частности, уровня развития ремесел в монастырях, ставших хранителями знаний, оставшихся от разрушенного мира, а впоследствии - в шумных торговых городах) для рождения экспериментальной науки - систематизированной части знаний, накопленных ремесленниками.
Более того, как показывает сравнительный анализ (типа проведенного Нидэмом19), в конце средних веков социальные структуры имели решающее значение. Общество перестало с презрением относиться к классу ремесленников и потенциальных новаторов в технике, как это было в Древней Греции. Более того, интеллектуалы, как и ремесленники, в большинстве своем обрели независимость от властей. Это были свободные предприниматели, ремесленники-новаторы, искавшие покровителей, стремившиеся к новшествам и старавшиеся использовать все предоставляющиеся техническими нововведениями возможности, сколь бы опасными те ни были для социального порядка. С другой стороны, как отмечает Нидэм. в Китае люди науки были официальными лицами, обязанными соблюдать все правила бюрократии. Китайские ученые составляли неотъемлемую часть государственной машины, основное предназначение которой состояло в поддержании закона и порядка. Компас, печатный станок, порох - все эти изобретения, немало способствовавшие подрыву коренных основ средневекового общества и наступлению в Европе новой эры, были открыты намного раньше в Китае, оо оказали на общество гораздо более слабое
дестабилизирующее действие. В отличие от консервативного китайского общества предприимчивое европейское меркантильное общество оказалось благоприятной средой для стимулирования и поддержания динамического и инновационного роста современной науки на ранних стадиях ее развития.
Однако по крайней мере один вопрос по-прежнему остается без ответа. Мы знаем, что строители машин использовали математические понятия - передаточные отношения шестерен, перемещения различных рабочих частей и геометрию их относительных положений. Но почему математизация не ограничилась машинами? Как возникло понятие естественного движения в образе рационализованной машины? Тот же вопрос можно задать и применительно к часам - одному из триумфов средневекового ремесленного искусства, который вскоре стал задавать ритм жизни в более крупных средневековых городах. Почему часы почти сразу после своего появления стали символом мирового порядка? Возможно, что в последнем вопросе содержится и некоторая доля ответа. Часы - механизм, управляемый рациональностью, которая лежит вне его, планом, которому слепо следуют внутренние детали. Мировые часы- метафора, наводящая на мысль о боге-часовщике, рациональном вседержителе, управляющем природой, послушно выполняющей его указания наподобие робота. По-видимому, на начальном этапе развития современной науки между теологической дискурсивной практикой и теоретической и экспериментальной деятельностью установился своего рода «резонанс», несомненно усиливший и упрочивший претенциозное мнение о том, будто ученые находятся на пути к раскрытию тайны «грандиозной машины Вселенной>.
Термином резонанс мы обозначили в данном случае необычайно сложную проблему. Нам отнюдь не хотелось (да мы и не в состоянии) утверждать, будто религиозная дискурсивная практика каким-то образом предопределила рождение теоретической науки или мировоззрения, которое начало развиваться вместе с экспериментальной деятельностью. Используя термин резонанс, т. е. взаимное усиление двух направлений мысли, мы сознательно выбрали выражение, симметричное относительно каждого из них: резонанс отнюдь не предполагает, что первенство и роль пускового механизма выпали на долю теологической дискурсивной практики или «научного мифа».
Следует заметить, что для некоторых философов вопрос о христианском происхождении западной науки является не только вопросом устойчивости концепции природы как автомата, но и вопросом о некоторой существенной связи между экспериментальной наукой как таковой и западной цивилизацией в ее древнееврейской и древнегреческой компонентах. Для Альфреда Норта Уайтхеда эта связь проходит на уровне инстинктивного убеждения. Такое убеждение было необходимо для того, чтобы вдохновить «научную веру» одного из основателей современной науки.
«Я имею в виду неколебимую веру в то, что любое подробно изученное явление может быть совершенно определенным образом - путем специализации общих принципов - соотнесено с предшествующими ему явлениями. Без такой веры чудовищные усилия ученых были бы безнадежными. Именно такое инстинктивное убеждение, неотступно предваряющее воображение, является движущей силой научного исследования, убеждение в том, что существует некая тайна и что эта тайна может быть раскрыта. Каким же образом такое убеждение столь глубоко укоренилось в сознании европейца?
Если указанное направление европейской мысли мы сравним с позицией, занимаемой в этом вопросе другими цивилизациями, когда они автономны, то вы-ясиится, что источник у него может быть лишь один. Интересующее пас направление берет начало из существовавшей в средние века непререкаемой веры в рациональность бога, сочетающего личную энергию Иеговы с рациональностью греческого философа. Ни одна деталь не ускользнула от его бдительного ока, каждой мелочи он нашел место в общем порядке. Исследование природы могло лишь еще сильнее укрепить веру в рациональность. Напомню, что речь идет не о продуманных убеждениях нескольких индивидов, а о том глубоком отпечатке, который оставила на мышлении европейца неколебимая вера, существовавшая на протяжении веков. Под этим я понимаю инстинктивное направление мысли, а не только словесный символ веры».
Мы не будем вдаваться в более глубокий анализ затронутой нами проблемы. Было бы неуместно «доказывать», что современная наука могла зародиться только в христианской Европе. Не возникает необходимости и в выяснении вопроса о том, могли ли основатели современной науки почерпнуть некий стимул из теологических аргументов. Для нас сейчас несущественно, были ли искренни или лицемерны те, с чьей помощью современная наука совершила свои первые шаги. Важно другое: не подлежит сомнению, что теологические аргументы (в различное для разных стран время) сделали умозрительные построения более социально приемлемыми и заслуживающими доверия. Ссылки на религиозные аргументы часто встречались в английских научных трудах даже в XIX в. Интересно, что для наблюдающегося ныне оживления интереса к мистицизму характерно прямо противоположное направление аргументации: в наши дни своим авторитетом наука придает вес мистическим утверждениям.
Вопрос, с которым мы здесь сталкиваемся, приводит к множеству проблем, в которых теологические и естественнонаучные вопросы неразделимо связаны с «внешней» историей науки, т. е. с описанием отношения между формой и содержанием научного знания, с одной стороны, и целей, на службу которым поставлена наука в своем социальном, экономическом и институциональном контекстах, - с другой. Как мы уже говорили, нас интересует сейчас лишь узкий вопрос: весьма специфические характер и следствия научной дискурсивной практики, усиливающиеся при резонансе с теологической дискурсивной практикой.
Нидэм21 рассказывает об иронии, с которой просвещенные китайцы XVIII в. встретили сообщения иезуитов о триумфах европейской науки того времени. Идея о том, что природа подчиняется простым познаваемым законам, была воспринята в Китае как непревзойденный пример антропоцентрической глупости. Нидэм считает, что эта «глупость» имеет глубокие культурные корни. Чтобы проиллюстрировать глубокие различия между западными и восточными концепциями, Нндэм ссылается на практиковавшиеся в средневековой Европе суды над животными. В некоторых случаях такие природные аномалии, как, например, петух, якобы несший яйца, расценивались как нарушение законов природы, которые приравнивались божественным законам, и петух торжественно приговаривался к смертной казни через сожжение на костре. Нидэм поясняет, что в Китае тот же петух при прочих равных исчез бы без лишнего шума. С точки зрения китайцев, он не виновен в совершении какого бы то ни было преступления, а просто его аномальное поведение нарушало гармонию природы и общества. Губернатор провинции и даже сам император оказались бы в весьма щекотливом положении, если бы «необычное» поведение петуха получило широкую огласку. Комментируя свой пример, Нидэм замечает, что, согласно господствовавшей в Китае философской концепции, космос пребывает в спонтанной гармонии и регулярность явлений не нуждается во внешнем источнике. Наоборот, гармония в природе, обществе и на небесах является результатом равновесия между этими процессами. Стабильные и взаимозависимые, они резонируют, как бы образуя недоступные слуху гармонические созвучия. Если бы какой-то закон и существовал, то это был бы закон, недостижимый ни для бога, ни для человека. Такой закон выражался бы на языке, разгадать который человек не в силах, но не был бы законом, предустановленным создателем, постигаемым в нашем собственном образе.
В заключение Нидэм ставит следующий вопрос: «Разумеется, в современных научных представлениях не сохранилось и намека на былые представления о властно повелевающих и требующих беспрекословного повиновения «Законах» природы. Ныне под законами природы принято понимать статистические закономерности, справедливые в определенные моменты времени и в определенных местах. По меткому выражению Карла Пирсона (в знаменитой главе его труда*), законы природы мы понимаем как описания, а не предписания. Точная степень субъективности в формулировках научных законов была предметом жарких дискуссий на протяжении всего периода от Маха до Эддингтона, но мы воздержимся от дальнейших комментариев по этому поводу. Проблема состоит в том, чтобы выяснить, возможно ли постичь статистические закономерности и сформулировать их математически, есля пойти по пути, отличному от реально пройденного западной наукой. Было ли состояние ума, при котором петух, несущий яйца, мог быть казнен по приговору суда, необходимым элементом культуры, способной впоследствии породить Кеплера?»22
Следует подчеркнуть, что научная дискурсивная практика не является простой транспозицией традиционных религиозных взглядов в новую тональность. Ясно, что мир, описываемый классической физикой, отличен от мира Книги Бытия, в котором бог создал свет, небо, земную твердь и все живое, мир, в котором непрестанно действует божественное провидение, пришпоривая человека и вынуждая его к участию в таких деяниях, где ставкой служит спасение его души. Мир классической физики - мир атемпоральный, лишенный времени. Такой мир, если он сотворен, должен быть сотворен «одним махом». Нечто подобное происходит, например, когда инженер, собирая робота и включая его, в дальнейшем предоставит ему возможность функционировать самостоятельно. В этом смысле развитие физики действительно происходило в противопоставлении и религии, и традиционной философии. И тем не менее, как мы знаем, христианский бог был призван, чтобы создать основу умопостигаемости мира. В этом случае действительно можно говорить о своего рода «конвергенции» интересов теологов, считавших, что мир должен познать всемогущество бога, полностью подчинившись ему, и физиков, занятых поисками мира математизируемых процессов.
Так или иначе, мир Аристотеля, разрушенный современной наукой, был неприемлем и для теологов, и для физиков. Этот упорядоченный, гармонический и рациональный мир был слишком независим, его обитатели- слишком могущественными и активными, их подчиненность абсолютному суверену-слишком подозрительной и ограниченной для того, чтобы удовлетворить многих теологов23. С другой стороны, этот мир был также слишком сложен и качественно дифференцирован для того, чтобы быть математизированным.
«Механическая» природа современной науки, сотворенная и управляемая по единому, полностью доминирующему над ней, но неизвестному ей плану, прославляет своего создателя и тем самым великолепно удовлетворяет запросам как теологов, так и физиков. Хотя
Лейбниц предпринял попытку доказать, что математизация совместима с миром, способным на активное и качественно дифференцированное поведение, ученые и теологи объединили свои усилия для описания природы как механизма, лишенного разума, пассивного, принципиально чуждого свободе и направленности человеческого разума. «Унылая штука без звука, без запаха, без цвета. Одна только материя, спешащая без конца и без смысла»24,- как заметил Уайтхед. Именно эта христианская природа, лишенная какого бы то ни было свойства, которое позволило бы человеку отождествить себя с древней гармонией естественного становления, оставляющая человека наедине с богом, конвергирует с природой, допускающей описание на одном языке, а не на тысяче математических голосов, слышавшихся Лейбницу.
Теология может оказаться полезной для уяснения странной позиции, занятой человеком, трудолюбиво дешифрующим законы, которым подчиняется мир. Человек (и это необходимо подчеркнуть особо) не является частью природы, которую он объективно описывает. Человек правит природой, оставаясь вне ее. Для Галилея человеческая душа, сотворенная по образу божьему, способна постигать рациональные истины, заложенные в самой основе плана творения, и, следовательно, постепенно приближаться к знанию мира, которым сам бог владеет интуитивно, во всей полноте и мгновенно25.
В отличие от древних атомистов, подвергавшихся преследованиям по обвинению в атеизме, и в отличие от Лейбница, которого иногда подозревали в отрицании милосердия божия или свободы воли, современным ученым удалось выработать определение своего предприятия, приемлемое с точки зрения культуры. Человеческий разум, которым наделено подчиняющееся законам природы тело, с помощью экспериментальных установок получает доступ к той самой сокровенной точке, откуда бог наблюдает за миром, к божественному плану, осязаемым выражением которого является наш мир. Однако сам разум остается вне своих собственных достижений. Все, что составляет живую ткань природы, например ее запахи и краски, ученый может описать лишь как некие вторичные, производные качества, не образующие составную часть природы, а проецируемые на нее нашим разумом. Принижение природы происходит параллельно с возвеличением всего, что ускользает от нее, - бога и человека.
6. Пределы классической науки
Мы попытались описать уникальную историческую ситуацию, когда научная практика и метафизические убеждения были тесно связаны. Галилей и его последователи подняли те же проблемы, что и средневековые строители, но отошли от эмпирического знания последних, утверждая с божьей помощью простоту мира и универсальность языка, постулируемого и дешифруемого с помощью экспериментального метода. Таким образом, основной миф, на котором зиждется современная наука, можно рассматривать как результат сложившегося в конце средних веков особого комплекса условий резонанса и взаимного усиления экономических, политических, социальных, религиозных, философских и технических факторов. Быстрый распад этого комплекса оставил классическую науку на мели, в изоляции от трансформировавшейся культуры.
Классическая наука была порождена культурой, пронизанной идеей союза между человеком, находящимся на полпути между божественным порядком и естественным порядком, и богом, рациональным и понятным законодателем, суверенным архитектором, которого мы постигаем в нашем собственном образе. Она пережила момент культурного консонанса, позволявшего философам и теологам заниматься проблемами естествознания, а ученым расшифровывать замыслы творца и высказывать мнения о божественной мудрости и могуществе, проявленных при сотворении мира. При поддержке религии и философии ученые пришли к убеждению о самодостаточности своей деятельности, о том, что она исчерпывает все возможности рационального подхода к явлениям природы. Связь между естественнонаучным описанием и натурфилософией в этом смысле не нуждалась в обосновании. Можно считать вполне самоочевидным, что естествознание и философия конвергируют и что естествознание открывает принципы аутентичной натурфилософии. Но, как ни странно, самодостаточности, которой успели вкусить ученые, суждено было пережить и уход средневекового бога, и прекращение срока действия гарантии, некогда предоставленной естествознанию теологией. То, что первоначально казалось весьма рискованным предприятием, превратилось в торжествующую науку XVIII в.26, открывшую законы движения небесных и земных тел, включенную Д'Аламбером и Эйлером в полную и непротиворечивую систему, в науку, историю которой Лагранж определил как логическое достижение, стремящееся к совершенству. В честь нее создавали академии такие абсолютные монархи, как Людовик XIV, Фридрих II и Екатерина Великая27. Именно эта наука сделала Ньютона национальным героем. Иначе говоря, это была наука, познавшая успех, уверенная, что ей удалось доказать бессилие природы перед проницательностью человеческого разума. «Je n'ai pas besoin de cette hypothese» - гласил ответ Лапласа на вопрос Наполеона, нашлось ли богу место в предложенной Лапласом системе мира.
Дуалистским импликациям современной науки, равно как и ее притязаниям, также было суждено выжить. В науке Лапласа, во многих отношениях все еще остававшейся в рамках классической концепции науки в нашем понимании, описание объективно в той мере, в какой из него исключен наблюдатель, а само описание произведено из точки, лежащей de jure вне мира, т. е. с божественной точки зрения, с самого начала доступной человеческой душе, сотворенной по образу бога. Таким образом, классическая наука по-прежиему претендует на открытие единственной истины о мире, одного языка, который даст нам ключ ко всей природе (мы, живущие ныне, сказали бы фундаментального уровня описания, из которого может быть выведено все существующее в этом мире).
Позвольте процитировать по этому весьма существенному пункту высказывание Эйнштейна, сумевшего дать точный перевод в современных терминах того, что мы называли основным мифом, на котором зиждется современная наука:
«Какое место занимает картина мира физиков-теоретиков среди всех возможных таких картин? Благодаря использованию языка математики эта картина удовлетворяет высоким требованиям в отношении строгости и точности выражения взаимозависимостей. Но зато физик вынужден сильно ограничивать свой предмет, довольствуясь изображением наиболее простых, доступных нашему опыту явлений, тогда как все сложные явления не могут быть воссозданы человеческим умом с той точностью и последовательностью, которые необходимы физику-теоретику. Высшая аккуратность, ясность и уверенность - за счет полноты. Но какую прелесть может иметь охват такого небольшого среза природы, если наиболее тонкое и сложное малодушно оставляется в стороне? Заслуживает ли результат столь скромного занятия гордого названия «картины мира»?
Я думаю - да, ибо общие положения, лежащие в основе мысленных построений теоретической физики, претендуют быть действительными для всех происходящих в природе событий. Путем чисто логической дедукции из них можно было бы вывести картину, т. е. теорию всех явлений природы, включая жизнь, если этот процесс дедукции не выходил бы далеко за пределы творческой возможности человеческого мышления. Следовательно, отказ от полноты физической картины мира не является принципиальным»28.
Одно время некоторые утверждали, будто тяготение в том виде, в каком оно выражено в законе всемирного тяготения, делает оправданным переход к природе как к чему-то внутренне одушевленному и при надлежащем обобщении способно объяснить возникновение все более специфических форм взаимодействий, в том числе даже взаимодействий в человеческом обществе. Но эти иллюзии вскоре рухнули не без влияния требований той политической, экономической и институциональной обстановки, в которой происходило развитие науки. Не будем вдаваться в обсуждение этого аспекта проблемы, хотя и не отрицаем его важности. Необходимо лишь подчеркнуть, что невозможность установить непротиворечивость классических взглядов и доказать то, что некогда было убеждением, стала печальной истиной. Единственной интерпретацией, способной конкурировать с классической интерпретацией науки, с тех пор стал позитивистский отказ от самого намерения понять мир. Например, Эрнст Мах, влиятельиый философ и физик, идеи которого оказали сильное влияние на молодого Эйнштейна, видел задачу науки в том, чтобы организовать данные опыта как можно в более экономном порядке. У науки, по Маху, нет другой осмысленной цели, кроме наиболее простого и наиболее экономичного абстрактного представления фактов:
«Именно в этом и кроется разгадка тайны, которая лишает науку загадочного ореола и показывает, в чем состоит ее реальная сила. Если говорить о конкретных результатах, то наука не дает нам ничего нового, к чему бы мы не могли прийти, затратив достаточно много времени, без всяких методов... Подобно тому как одни человек, опирающийся только на плоды своего труда, никогда не сможет сколотить состояние, в то время как скопление результатов труда многих людей в руках одного человека есть основа богатства и власти, точно так же любое знание, заслуживающее того, чтобы так называться, не может быть наполнено разумом одного человека, ограниченного продолжительностью человеческой жизни и наделенного лишь конечными силами, если он не прибегнет к самой жесткой экономии мысли и тщательному собиранию экономно упорядоченного опыта тысяч сотрудников»29.
Итак, наука полезна потому, что приводит к экономии мышления. Возможно, что в таком утверждении есть определенная доля истины, но разве экономией мышления исчерпывается все содержание науки? Как далеко все это от взглядов Ньютона, Лейбница и других основателен западной науки, притязавших на создание рациональной основы физического мира! Наука, по Маху, дает нам некоторые полезные правила действия, но не более.
Мы возвращаемся к исходной точке - к идее о том, что именно классическая наука, которую на протяжении определенного периода времени было принято считать символом культурного единства, а не наука как таковая, стала причиной описанного нами культурного кризиса. Ученые оказались в плену лабиринтов блужданий между оглушающим грохотом «научного мифа» и безмолвием «научной серьезности», между провозглашением абсолютной и глобальной природы научной истины и отступлением к концепции научной теории как прагматического рецепта эффективного вмешательства в природные процессы.
Как уже было сказано, мы разделяем ту точку зрения, согласно которой классическая наука достигла ныне своих пределов. Одним из аспектов трансформации взглядов на науку явилось открытие ограниченности классических понятий, из которых следовала возможность познания мира как такового. Всемогущие существа, подобные демонам Лапласа и Максвелла или богу Эйнштейна, играя важную роль в научных рассуждениях, воплощают в себе как раз те типы экстраполяции физической мысли, которые они сами признают возможными. Когда же в физику в качестве объекта положительного знания входят случайность, сложность и необратимость, мы отходим от прежнего весьма наивного допущения о существовании прямой связи между нашим описанием мира и самим миром. Объективность в теоретической физике обретает более тонкое значение.
Такое развитие событий было вызвано неожиданными дополнительными открытиями, доказавшими существование универсальных постоянных, например скорости света, ограничивающих возможности нашего воздействия на природу. (Неожиданную ситуацию, возникшую в связи с открытием универсальных постоянных, мы обсудим в гл. 7.) В результате физикам пришлось изыскивать новые математические средства, что привело к дальнейшему усложнению соотнесения между восприятием и интерпретацией. Как бы мы ни интерпретировали реальность, ей всегда соответствует некая активная мысленная конструкция. Описания, предоставляемые наукой, не могут быть более отделены от нашей исследовательской деятельности и, таким образом, не могут быть приписаны некоему всеведущему существу.
В канун появления ньютоновского синтеза Джон Дони так оплакивал аристотелевский космос, разрушенный Коперником:
Новые философы все ставят под сомнение, Стихия грозная - огонь - изъят из обращения.
Не Солнце кружит круг Земли, Земля - вокруг светила. Все люди честно признают: пошел весь мир наш прахом, Когда сломали мудрецы его единым махом. Повсюду новое ища (сомненье - свет в окошке), Весь мир разрушили они до камешка, до крошки30.
Из руин нашей современной культуры, по-видимому, как и во времена Донна*, можно сложить новую согласованную культуру. Классическая наука, мифическая наука простого пассивного мира, ныне - достояние прошлого. Смертельный удар был нанесен ей не критикой со стороны философов и не смиренным отказом эмпириков от попыток понять мир, а внутренним развитием самой науки.
Глава 2 УСТАНОВЛЕНИЕ РЕАЛЬНОГО
1. Законы Ньютона
Рассмотрим теперь более подробно механистическое мировоззрение, возникшее на основе трудов Галилея, Ньютона и их преемников. Мы опишем сильные стороны этого мировоззрения, укажем те аспекты природы, которые ему удалось прояснить, не обойдем молчанием и присущие ему ограничения.
Со времен Галилея одной из центральных проблем физики было описание ускорения. Самым удивительным было то, что изменение в состоянии движения тела допускало описание в простых математических терминах. Ныне это обстоятельство кажется почти тривиальным. Не следует, однако, забывать о том, что китайская наука, добившаяся значительных успехов во многих областях, так и не смогла дать количественную формулировку законов движения. Галилей открыл, что если движение равномерно и прямолинейно, то необходимость в поиске причины такого состояния движения ничуть не больше, чем в поиске причины состояния покоя. И равномерное прямолинейное движение и покой сохраняют устойчивость сколь угодно долго - до тех пор пока не происходит что-нибудь, нарушающее их. Следовательно, центральной проблемой является переход от состояния покоя к движению и от движения - К состоянию покоя или, более общо, проблема изменения любых скоростей. Как происходят такие изменения? Формулировка законов движения Ньютона основана па использовании двух конвергентных направлений развития: одного физического (законы движения планет Кеплера и законы свободного падения тел Галилея) и другого математического (создание дифферепциального исчисления, или исчисления бесконечно малых).
Как определить непрерывно изменяющуюся скорость? Как описать мгновенные изменения различных величин: положения тела, скорости и ускорения? Как описать состояние движения тела в любой заданный момент? Чтобы ответить на эти вопросы, математики ввели понятие бесконечно малой величины. Любая бесконечно малая величина есть результат некоторого предельного перехода. Обычно это приращение величины между двумя последовательно выбранными моментами времени, когда длина разделяющего их временного интервала стремится к нулю. При таком подходе конечное изменение разбивается на бесконечный ряд бесконечно малых изменений.
В каждый момент времени состояние движущегося тела можно задать, указав его положение - вектор г, скорость v, характеризующую «мгновенную тенденцию» К изменению положения, и ускорение а, также характеризующее «мгновенную тенденцию» к изменению, но уже не положения, а скорости. Мгновенные скорости и ускорения - это пределы отношений двух бесконечно малых величин: приращения г (или v) за временной интервал 1t и самого временного интервала At, когда At стремится к нулю. Такие величины называются производными по времени. Со времен Лейбница их принято обозначать соответственно как v = dr/dt и a=dv/dt. Ускорение, будучи «производной от производной», становится второй производной: a = d2r/ds2. Проблема, находящаяся в центре внимания всей ньютоновской физики,- вычисление этой второй производной, т. е. ускорения, испытываемого в любой заданный момент материальными точками, образующими некую систему. Движение каждой из точек за конечный интервал времени может быть вычислено с помощью интегрирования- суммирования бесконечно большого числа бесконечно малых приращений скорости за этот интервал времени, В простейшем случае ускорение а постоянно (например, если тело падает свободно, то а равно ускорению свободного падения g). В общем случае ускорение изменяется со временем, и задача физика состоит в том, чтобы точно установить характер этого изменения.
На языке Ньютона найти ускорение означает определить различные силы, действующие на точки рассматриваемой системы. Второй закон Ньютона (F= та) утверждает, что сила, приложенная к любой материальной точке, пропорциональна производимому ею ускорению. В случае системы материальных точек задача несколько усложняется, так как силы, действующие на заданное тело, в каждый момент времени зависят от относительных расстояний между телами системы и поэтому изменяются со временем в результате ими же производимого движения.
Любая задача динамики представима в виде системы дифференциальных уравнений. Мгновенное состояние каждого из тел системы описывается как мгновенное состояние материальной точки и определяется заданием его положения, скорости и ускорения, т. е. первыми и вторыми производными от вектора r, задающего положение тела. В каждый момент времени система сил, зависящая от расстояний между точками системы (т. е. от r), однозначно определяет ускорение каждой точки. Ускоренное движение точек приводит к изменению расстояний между ними и, следовательно, системы сил, действующих на них в следующий момент.
Если запись дифференциальных уравнений означает постановку динамической задачи, то их интегрирование соответствует решению этой задачи. Интегрирование сводится к вычислению траекторий r(t), в которых содержится вся информация, существенная для динамики. Она дает полное описание динамической системы.
В этом описании можно выделить два элемента: положения и скорости всех материальных точек в один момент времени (часто называемые начальными условиями) и уравнения движения, связывающие динамические силы с ускорениями. Интегрирование уравнений движения развертывает начальное состояние в последовательность состояний, т. е. порождает семейство траекторий тел, образующих рассматриваемую систему.
Триумфом ньютоновской науки явилось открытие универсальности гравитации: одна и та же сила «всемирного тяготения», или гравитации, определяет и движение планет и комет в небе, и движение тел, падающих на поверхность Земли. Из теории Ньютона следует, что между любыми двумя материальными телами действует одна и та же сила взаимного притяжения.
Таким образом, ньютоновская динамика обладает двоякой универсальностью. Математическая формулировка закона всемирного тяготения, описывающая, каким образом стремятся сблизиться любые две массы, не связана ни с каким масштабом явлений. Закон всемирного тяготения одинаково применим к движению атомов, планет или звезд в галактиках.
Любое тело, каковы бы ни были его размеры, обладает массой и действует как источник ньютоновских сил тяготения.
Поскольку между любыми двумя массами возникают силы взаимного притяжения (на каждое из двух тел с массами га и то', находящихся на расстоянии r друг от друга, со стороны другого тела действует сила притяжения, равна kmm'/r2, где k - ньютоновская гравитационная постоянная; & = 6,67 Н-м2/кг2), то единственной истинно динамической системой является только Вселенная в целом. Любую локальную динамическую систему, например нашу планетную систему, можно определить лишь приближенно, пренебрегая силами, малыми в сравнении с теми, действие которых мы рассматриваем.
Следует подчеркнуть, что для произвольно выбранной динамической системы законы движения всегда представимы в виде F=ma. Помимо гравитации, могут быть и действительно были открыты другие силы, например силы взаимного притяжения и отталкивания электрических зарядов. Каждое такое открытие изменяет эмпирическое содержание законов движения, но не затрагивает их формы. В мире динамики изменение отождествляется с ускорением (как положительным - в случае разгона, так и с отрицательным - в случае торможения). Интегрирование законов движения позволяет найти траектории, по которым движутся частицы. Следовательно, законы изменения, или влияния времени на природу, должны быть как-то связаны с характеристиками траекторий.
К числу основных характеристик траекторий относятся регулярность, детерминированность и обратимость. Мы уже знаем, что для вычисления любой траектории, помимо известных законов движения, необходимо эмпирически задать одно мгновенное состояние системы. Общие законы движения позволяют вывести из заданного начального состояния бесконечную серию
состояний, проходимых системой со временем, подобно тому, как логика позволяет выводить заключения из исходных посылок. Замечательная особенность траекторий динамической системы состоит в том, что, коль скоро силы известны, одного-единственного состояния оказывается достаточно для полного описания системы - не только ее будущего, но и прошлого. Следовательно, в любой момент времени все задано. В динамике все состояния эквивалентны: каждое из них позволяет вычислить остальные состояния вместе с траекторией, проходящей через все состояния как в прошлом, так и в будущем.
«Все задано». Этот вывод классической динамики, как неоднократно подчеркивал Бергсон, характеризует описываемую динамикой реальность. Все задано, но вместе с тем и все возможно. Существо, способное управлять динамической системой, может вычислить нужное ему начальное состояние так, чтобы система, будучи предоставленной самой себе, «спонтанно» перешла в любое заранее выбранное состояние в заданный момент времени. Общность законов динамики уравновешивается произволом в выборе начальных условий.
Обратимость динамической траектории в явном виде формулировали все основатели динамики. Например, когда Галилей или Гюйгенс описывали, к чему приводит эквивалентность причины и действия, постулированная ими как основа математизации движения, они прибегали к мысленным опытам, в частности к опыту с упругим отражением шарика от горизонтальной поверхности. В результате мгновенного обращения скорости в момент соударения такое тело вернулось бы в начальное положение. Динамика распространяет это свойство (обратимость) на все динамические изменения. Опыт с шариком - один из первых мысленных опытов в истории современной науки - иллюстрирует одно общее математическое свойство уравнения динамики: из структуры уравнений динамики следует, что если обратить скорости всех точек системы, то система «повернет вспять» - начнет эволюциоиировать назад во времени. Такая система прошла бы вновь через все состояния, в которых она побывала в прошлом. Динамика определяет как математически эквивалентные такие преобразования, как обращение времени /->-/ и обращение скорости v->v. Изменения, вызванные в
Динамической системе одним преобразованием - обращением времени, могут быть компенсированы другим преобразованием - обращением скорости. Второе преобразование позволяет в точности восстановить начальное состояние системы.
Выяснилось, однако, что с присущим динамике свойством обратимости связана определенная трудность, все значение которой было в должной мере осознано лишь после создания квантовой механики: воздействие и измерение принципиально необратимы. Таким образом, активная наука, по определению, лежит за пределами идеализированного обратимого мира, который она описывает. С более общей точки зрения обратимость можно рассматривать как своего рода символ «странности» мира, описываемого динамикой. Всякий знает, какие нелепости возникают на экране, если пустить киноленту от конца к началу: сгоревшая дотла спичка вспыхивает ярким огнем и, пылая, превращается в полномерную спичку с нетронутой серной головкой, осколки разбитой вдребезги чернильницы сами собой собираются в целую чернильницу, внутрь которой чудесным образом втягивается лужица пролитых было чернил, толстые ветви на дереве на глазах утончаются, превращаясь в тоненькие молодые побеги. В мире классической динамики все эти события считаются столь же вероятными, как и события, отвечающие нормальному ходу явлений.
Мы так привыкли к законам классической динамики, которые преподаются нам едва ли не с младших классов средней школы, что зачастую плохо сознаем всю смелость лежащих в их основе допущений. Мир, в котором все траектории обратимы,- поистине странный мир. Не менее поразительно и другое допущение, а именно допущение полной независимости начальных условий от законов движения. Камень действительно можно взять и бросить с любой начальной скоростью в пределах физической силы бросающего, но как быть с такой сложной системой, как газ, состоящий из огромного числа частиц? Ясно, что в случае газа мы уже не можем налагать произвольные начальные условия. Они должны быть исходом эволюции самой динамической системы. Это - весьма важное обстоятельство, и к его обсуждению мы еще вернемся в третьей части нашей книги. Но каковы бы ни были ограничения, суживающие применимость классической динамики к реальному миру, мы и сегодня, через три столетия после ее создания, можем лишь восхищаться логической последовательностью и мощью методов, разработанных творцами классической динамики.
2. Движение и изменение
Аристотель сделал время мерой изменения. При этом он полностью сознавал качественное многообразие изменений, происходящих в природе. В динамике все внимание сосредоточено на изучении лишь одного типа изменения, одного процесса - движения. Качественное разнообразие происходящих в природе изменений динамика сводит к изучению относительного перемещения материальных тел. Время в динамике играет роль параметра, позволяющего описывать эти относительные перемещения. Тем самым в мире классической динамики пространство и время нераздельно связаны между собой (см. также гл. 9).
Изменение, рассматриваемое в динамике, интересно сравнить с концепцией изменения, принятой у атомистов, сторонников корпускулярной теории, пользовавшейся необычайной популярностью во времена, когда Ньютон размышлял над своими законами. По-видимому, не только Декарт, Гассенди и Д'Аламбер, но и сам Ньютон усматривали в соударениях твердых частиц - корпускул, первопричину и скорее всего единственный источник изменения движения1. Тем не менее динамическое описание в корне отлично от корпускулярного. Действительно, непрерывный характер ускорения, описываемого уравнениями динамики, разительно контрастирует с дискретными мгновенными соударениями твердых корпускул. Еще Ньютон заметил, что в отличие от динамики каждое столкновение твердых корпускул сопровождается необратимой убылью движения. Обратимо, т. е. согласуется с законами динамики, только упругое столкновение, при котором сохраняется импульс, или количество движения. Но приложимо ли столь сложное понятие, как упругость, к атомам, которые, по предположению, являются мельчайшими структурными элементами природы?
С другой стороны, на менее техническом уровне законы динамики противоречат случайности, обычно
приписываемой атомным столкновениям. Еще древние философы отмечали, что любой происходящий в природе процесс допускает множество различных интерпретаций как результат движения и столкновения атомов. Однако основная проблема для атомистов заключалась не в этом: их главной целью было дать описание мира без божества и законов, в котором человек свободен и может не ожидать ни кары, ни воздаяния ни от божественного, ни от естественного порядка. Но классическая наука была наукой инженеров и астрономов, наукой активного действия и предсказания. Чисто умозрительные построения, основанные на гипотетических атомах, не могли удовлетворять потребности классической науки, в то время как законы Ньютона давали надежную основу для предсказания и активного действия. С принятием законов Ньютона природа становится законопослушной, покорной и предсказуемой вместо того, чтобы быть хаотичной, нерегулярной и непредсказуемой. Но какова же связь между смертным, нестабильным миром, в котором атомы непрестанно сталкиваются и разлетаются вновь, и незыблемым миром динамики, в котором властвуют законы Ньютона, - единственная математическая формула, соответствующая вечной истине, открывающейся навстречу тавтологическому будущему? В XX в. мы вновь становимся свидетелями столкновения между закономерностью и случайными явлениями, конфликта, мучившего, как показал Койре, еще Декарта2. С тех пор как в конце XIX в. - в связи с появлением кинетической теории газов - атомный хаос вновь вошел в физику, проблема взаимосвязи динамического закона и статистического описания стала одной из центральных в физике. Решение ее - один из ключевых элементов происходящего ныне «обновления» динамики (см. часть III настоящей книги).
В XVIII в. противоречие между динамическим законом и статистическим описанием воспринималось как зашедшее в тупик развитие науки, и это отчасти объясняет тот скептицизм, с которым некоторые физики XVIII в. относились к зпачимости предложенного Ньютоном динамического описания. Мы уже упоминали о том, что столкновения могут сопровождаться необратимой убылью движения. По мнению некоторых физиков XVIII в., в подобных неидеальных случаях «энергия» не сохраняется, а происходит ее необратимая диссипация (см. разд. 3, гл. 4). Это объясняет, почему атомнсты - сторонники корпускулярной теории - не могли не видеть в динамике Ньютона идеализацию, обладающую ограниченной ценностью. Физики и математики континентальной Европы, в том числе Д'Аламбер, Клеро и Лагранж, долгое время сопротивлялись обольстительным чарам ньютониаиства.
Куда же восходят корни ньютоновской концепции изменения? Ньютоновская концепция при внимательном рассмотрении оказывается синтезом теории идеальных машин, в которой передача движения осуществляется без соударения или трения частей, находящихся в контакте, и науки о небесных телах, взаимодействующих на расстоянии. Как уже говорилось, ньютоновская концепция изменения является антитезой концепции атомизма, основанной на понятии случайных столкновений. Оправдывает ли это взгляды тех, кто считает, что ньютоновская динамика является разрывом в истории мышления, революционным новшеством? Ведь именно это утверждают историки-позитивисты, когда описывают, как Ньютон избежал колдовских чар наперед заданных понятий н нашел в себе достаточно смелости для того, чтобы из результатов математического исследования движения планет и свободно падающих тел вывести заключение о существовании универсальной силы тяготения. Мы знаем и противоположное: рационалисты XVIII в. всячески подчеркивали внешнее сходство между «математическими» силами Ньютона и традиционными оккультными качествами. К счастью, эти критики не знали необычной истории, стоявшей за ньютоновскими силами! Дело в том, что за осторожным высказыванием Ньютона «Я не измышляю гипотез» относительно природы сил скрывалась страсть алхимика4. Теперь мы знаем, что наряду со своими математическими исследованиями Ньютон на протяжении тридцати лет изучал труды алхимиков древности и проводил сложнейшие лабораторные эксперименты в надежде, что ему удастся раскрыть тайну «философского камня» и синтезировать золото.
Некоторые из современных историков науки пошли еще дальше и утверждают, что ньютоновский синтез Земли и неба был в большей мере достижением химика, чем астронома. Ньютоновское всемирное тяготение «анимировало» материю и в более строгом смысле
превращало всю деятельность природы в наследницу тех самых сил, которые химик Ньютон наблюдал и использовал в своей лаборатории, - сил химического «сродства», способствующих илн препятствующих образованию каждой новой комбинации материи5. Решающая роль, сыгранная орбитами небесных тел, сохраняет свое значение. Однако в самом начале своих занятий астрономией (около 1679 г.) Ньютон, по-видимому, ожидал найти новые силы тяготения только на небесах - силы, подобные химическим силам и, быть может, легче поддающиеся исследованию математическими методами. Шесть лет спустя математические исследования привели Ньютона к неожиданному выводу: силы, действующие между планетами, и силы, ускоряющие свободно падающие тела, не только подобны, но и тождественны. Тяготение не специфично для каждой планеты в отдельности, оно одно и то же для Луны, обращающейся вокруг Земли, для всех планет и даже для комет, пролетающих через солнечную систему. Ньютон поставил перед собой задачу открыть в небе силы, подобные химическим силам: специфические сродства, различные для различных соединений, наделяющие каждое химическое соединение качественно дифференцированной способностью вступать в реакции. Но в результате своих исследований он обнаружил универсальный закон, применимый, как подчеркивал сам Ньютон, ко всем явлениям природы - химическим, механическим или небесным.
Таким образом, ньютоновский синтез с полным основанием можно считать сюрпризом. Именно в память о столь неожиданном, поразительном открытии научный мир видит в имени Ньютона символ современной науки. Нельзя не удивляться тому, что для раскрытия основного кода природы потребовался единичный творческий акт.
В течение долгого времени эта неожиданная «разговорчивость» природы, этот триумф английского Моисея были источником интеллектуального конфуза для континентальных рационалистов. Свершение Ньютона они считали чисто эмпирическим открытием, которое с таким же успехом могло быть эмпирически опровергнуто. В 1747 г. Эйлер, Клеро и Д'Аламбер, несомненно принадлежавшие к числу величайших ученых своего времени, пришли к одному и тому же заключению: Ньютон
совершил ошибку. Для описания движения Луны математическое выражение для величины силы притяжения должно иметь более сложный вид, чем у Ньютона, и состоять из двух слагаемых. На протяжении двух последующих лет они пребывали в убеждении, что природа доказала ошибочность выводов Ньютона, и эта уверенность вдохновила их. Далекие от мысли видеть в открытии Ньютона синоним физической науки, физики не без удовольствия помышляли о том, чтобы предать забвению закон всемирного тяготения и вместе с ним вывод об универсальности гравитации. Д'Аламбер не видел ничего зазорного в том, чтобы во всеуслышание заявить о необходимости поиска новых данных против Ньютона, которые позволили бы нанести тому «le coup de pied de Гале».
Лишь один человек во Франции нашел в себе мужество возвысить голос против столь уничижительного приговора. В 1748 г. Бюффон написал следующие строки:
«Физический закон есть закон лишь в силу того, что его легко измерить и что шкала, которую он собой представляет, не только всегда одна и та же, но и единственная в своем роде... Месье Клеро выдвинул возражение против системы Ньютона, но это в лучшем случае возражение, и оно не должно и не может быть принципом. Необходимо попытаться преодолеть его, а не превращать в теорию, все следствия из которой опираются исключительно на вычисления, ибо, как я уже говорил, с помощью вычислений можно представить что угодно и не достичь ничего. Считая допустимым дополнять физический закон, каковым является закон всемирного тяготения, одним или несколькими членами, мы лишь добавляем произвол вместо того, чтобы описывать реальность»7.
Позднее Бюффон провозгласил тезис, который, хотя и на короткое время, стал программой исследований для всей химии:
«Законы сродства, следуя которым составные части различных веществ разъединяются для того, чтобы, соединившись вновь в иных сочетаниях, образовать однородные вещества, такие же, как и общий закон, которому подчиняется взаимодействие между всеми пебесными телами: все они действуют друг на друга одинаковым образом, в одинаковой зависимости от масс и расстояния - шарик из воды, песка или металла действует на другой шарик так же, как земной шар действует на Луну; и если законы сродства ранее считались отличными от законов тяготения, то лишь потому, что они но были полностью поняты, не были до конца постигнуты, лишь потому, что проблема не рассматривалась в полном объеме. В случае небесных тел конфигурация либо сказывается слабо, либо вообще не сказывается из-за огромных расстояний, но становится необычайно важной, когда расстояния очень малы или обращаются в нуль... Наши внуки смогут с помощью вычислений добиться успеха в этой новой области знания [т. е. вывести закон взаимодействия между элементарными телами из их конфигураций]»8.
История подтвердила правоту натуралиста, для которого сила была не математическим артефактом, а самой сущностью нового естествознания, Последующее развитие событий вынудило физиков признать свою ошибку. Пятьдесят лет спустя Лаплас уже смог создать свое «Изложение системы мира». Закон всемирного тяготения успешно выдержал все проверки: многочисленные случаи кажущегося нарушения этого закона превратились в блестящие подтверждения его правильности. В то же время французские химики под влиянием Бюффона заново открыли странную аналогию между физическим притяжением и химическим сродством9. Несмотря на едкий сарказм Д'Аламбера, Кондильяка и Кондорсе, чей несгибаемый рационализм был совершенно несовместим с темными и бессодержательными «аналогиями», они прошли по пути, проложенному Ньютоном, в обратном направлении - от звезд к веществу.
К началу XIX в. ньютоновская программа (сведение всех физико-химических явлений к действию сил - к гравитационному притяжению добавилась отталкивающая сила тепла, заставляющая тела расширяться при нагревании и способствующая растворению, а также электрическая и магнитная силы) стала официальной программой лапласовской школы, занимавшей доминирующее положение в научном мире в эпоху, когда в Европе господствовал Наполеон10.
Начало XIX в. стало свидетелем расцвета французских высших ecotes (школ) и реорганизаций университетов. Это было время, когда ученые становились преподавателями и профессиональными исследователями и брали на себя задачу воспитания своих преемников". Это было время первых попыток представить синтез знания в удобообозримой форме, для того чтобы изложить его в учебниках и научно-популярных изданиях. Наука перестала быть предметом обсуждения только в великосветских салонах, ее преподавали и популяризировали12. Относительно науки было достигнуто профессиональное единство мнений, она была освящена авторитетом университетских кафедр. Ученые сошлись во мнениях прежде всего по поводу ньютоновской системы: во Франции уверенность Бюффона в правильности ньютоновского подхода наконец возобладала над рациональным скептицизмом века Просвещения.
Велеречивость следующих строк, написанных через сто лет после ньютоновского апофеоза в Европе сыном Ампера, эхом вторит эпитафии А. Поупа:
Провозгласив пршпествне мессии от науки,
Кеплер разогнал тучи, скрывавшие небосвод.
И Слово стало человеком, Слово прозрения Бога,
Коего почитал Платон, и нарекли человека Ньютоном.
Он пришел и открыл высший закон,
Вечный, универсальный, единственный и неповторимый, как саи Бог,
И смолкли миры, и он изрек: «ТЯГОТЕНИЕ»,
И это слово было самим словом творения13.
Последовавший затем короткий, но оставивший неизгладимый след период был периодом торжества науки. Она удостоилась признания и почестей со стороны могущественных держав, была провозглашена обладательницей непротиворечивой концепции мироздания. Почитаемый Лапласом Ньютон стал всеобщим символом золотого века. То был счастливый момент, когда ученые были и в собственных глазах, и в глазах других людей пионерами прогресса, чью деятельность поддерживало и поощряло все общество.
Уместно спросить: каково значение ньютоновского синтеза в наши дни, после создания теории поля, теории относительности и квантовой механики? Это - сложная проблема, и мы к ней еще вернемся. Теперь нам хорошо известно, что природа отнюдь не «комфортабельна и самосогласованна», как полагали прежде. На микроскопическом уровне законы классической механики уступили место законам квантовой механики. Аналогичным образом на уровне Вселенной на смену ньютоновской физике пришла релятивистская физика. Тем не менее классическая физика и поныне остается своего рода естественной точкой отсчета. Кроме того, в том смысле, в каком мы определили ее, т. е. как описание детерминированных, обратимых, статичных траекторий, ньютоновская динамика и поныне образует центральное ядро всей физики.
Разумеется, со времен Ньютона, формулировка классической динамики претерпела значительные изменения. Эти изменения явились результатом работы ряда величайших математиков и физиков, таких, как Гамильтон и Пуанкаре. В истории классической динамики кратко можно выделить два периода. Первым был период прояснения и обобщения. Во второй период даже в тех областях, где (в отличие от квантовой механики и теории относительности) классическая механика в целом по-прежнему остается верной, ее основные понятия подверглись критическому пересмотру. В тот момент, когда пишется эта книга - в конце XX в., - мы все еще находимся во втором периоде. Обратимся теперь к общему языку динамики, созданному трудами ученых XIX в. (в гл. 9 мы кратко опишем возрождение классической динамики в наше время).
3. Язык динамики
Ныне мы располагаем всем необходимым для того, чтобы сформулировать классическую динамику компактно и изящно. Как мы увидим из дальнейшего, вес свойства динамической системы могут быть выражены с помощью одной функции, известной под названием функций Гамильтона, или гамильтониана. Языку динамики свойственны непротиворечивость и полнота. Он позволяет однозначно сформулировать любую правильно поставленную («законную») задачу динамики. Неудивительно, что начиная с XVIII в. структура динамики вызывала и продолжает вызывать восхищение и поныне поражает воображение.
В динамике одну и ту же систему можно рассматривать с различных точек зрения. В классической динамике все эти точки зрения эквивалентны: от любой
из них к любой другой можно перейти с помощью преобразования (замены переменных). Можно говорить о различных эквивалентных представлениях, в которых выполняются законы динамики. Различные эквивалентные представления образуют общий язык динамики. Этот язык позволяет выразить в явном виде статический характер, придаваемый классической динамикой описываемым ею системам: для многих классических систем время не более чем акциденция, поскольку их описание может быть сведено к описанию невзаимодействующих механических систем. Для того чтобы мы могли ввести эти понятия наиболее просто, начнем с закона сохранения энергии.
В идеальном мире динамики, не знающем ни трения, ни соударений, коэффициент полезного действия машин равен единице: динамическая система, которой является машина, лишь передает «целиком, без остатка» все сообщаемое ей движение. Машина, получающая некоторый запас потенциальной энергии (например, в виде сжатой пружины, поднятого груза или сжатого воздуха), может производить движение, соответствующее «равному» количеству кинетической энергии, а именно тому, которое потребовалось бы для восполнения запаса потенциальной энергии, израсходованного на производство движения. В простейшем случае единственная сила, которую приходится рассматривать, - это сила тяжести (с этим случаем мы встречаемся при анализе работы всех простых машин: блоков, рычагов, воротов и т. д.). Нетрудно вывести (для этого случая) общее отношение эквивалентности причины и действия. Высота h, которую проходит при падении тело, полностью определяет скорость, приобретаемую телом к концу падения. Если тело с массой m падает вертикально, соскальзывает по наклонной плоскости или съезжает с горки, то приобретаемая телом скорость v и кинетическая энергия mv2/2 зависят только от величины h, на которую понизился уровень тела (v = y2gh), и позволяют телу вернуться на первоначальную высоту. Работа против силы тяжести, совершаемая при движении вверх, восполняет потенциальную энергию на величину mgh, т. е. на столько, сколько потеряла система при падении. Другим примером может служить маятник, у которого кинетическая и потенциальная энергия непрерывно преобразуются одна в другую.
Разумеется, если вместо тела, падающего на Землю, рассматривать какую-нибудь систему взаимодействующих тел, то ситуация будет не столь прозрачной. Тем не менее в любой момент времени полное изменение кинетической энергии вполне компенсирует изменение потенциальной энергии (связанное с изменением расстояний между точками системы). Следовательно, в любой изолированной системе энергия, как и в случае свободного падения, сохраняется.
Таким образом, потенциальная энергия (или потенциал, обычно обозначаемый через V), зависящая от относительного положения частиц, является обобщением величины, позволявшей строителям машин измерять движение, которое могла бы производить машина в результате изменения ее пространственной конфигурации (например, изменение высоты массы m - одной из частей машин - увеличивает потенциальную энергию на nigh). Кроме того, потенциальная энергия позволяет вычислять систему сил, приложенных в каждый момент времени к различным точкам описываемой системы: в каждой точке производная от потенциала по пространственной координате q служит мерой силы, приложенной в данной точке в направлении этой координаты. Таким образом, законы движения Ньютона можно сформулировать, используя в качестве основной величины потенциальную энергию вместо силы: изменение скорости (или импульса р - произведения массы и скорости) материальной точки измеряется производной от потенциала по координате q точки.
В XIX в. эта формулировка второго закона Ньютона была обобщена с помощью введения новой функции- гамильтониана Н. Функция Гамильтона есть не что иное, как полная энергия системы, т. е. сумма ее кинетической и потенциальной энергии. Но полная энергия представлена как функция не координат и скоростей, обозначаемых, по традиции, соответственно q и dq/dt, а так называемых канонических переменных - координат и импульсов, которые принято обозначать q и р. В простейших случаях, таких, как свободная частица, между скоростью и импульсом существует явное соотношение (p = mdqldl), но в общем случае скорость и импульс связаны более сложной зависимостью.
Одна функция (гамильтониан) Н(р, q) полностью описывает динамику системы. Вид функции Н несет в
себе все наше эмпирическое знание системы. Зная гамильтониан, мы можем (по крайней мере в принципе) решить все возможные задачи. Например, изменения координаты и импульса во времени равны просто производным от Н по р и q. Гамильтонова формулировка динамики - одно из величайших достижений в истории науки. Впоследствии сфера действия гамильтонова формализма расширилась, охватив теорию электричества и магнетизма. Используется он и в квантовой механике, но, как мы увидим в дальнейшем, гамильтониан Я при этом приходится понимать в обобщенном смысле: в квантовой механике гамильтониан перестает быть обычной функцией координат и импульсов и становится величиной нового типа - оператором. (К этому вопросу мы еще вернемся в гл. 7.) Не будет преувеличением сказать, что гамильтоново описание динамических систем и поныне имеет первостепенное значение. Уравнения, задающие временные изменения координат и импульсов через производные от гамильтониана, называются каноническими уравнениями. В них содержатся общие свойства всех динамических изменений. Гамильтонов формализм представляет собой несомненный триумф математизации природы. Любое динамическое изменение, к которому применима классическая динамика, может быть сведено к простым математическим уравнениям - каноническим уравнениям Гамильтона.
Используя эти уравнения, мы можем проверить правильность заключений относительно общих свойств динамических систем, выведенных в классической динамике. Канонические уравнения обратимы: обращение времени математически эквивалентно обращению скорости. Канонические уравнения консервативны: гамильтониан, выражающий полную энергию системы в канонических переменных (координатах и импульсах), сохраняется при изменениях координат и импульсов во времени.
Мы уже упоминали о том, что существует множество различных представлений одной и той же динамической системы (или множество различных точек зрения на одну и ту же динамическую систему), в каждом из которых уравнения движения сохраняют гамильтонову форму. Эти представления соответствуют различным выборам координат и импульсов. Одна из основных проблем динамики заключается в том, чтобы указать
наиболее разумный выбор канонических переменных р и q, при котором описание динамики становится особенно простым. Например, можно было бы попытаться найти канонические переменные, в которых гамильтониан сводится только к кинетической энергии и зависит лишь от импульсов (а не от координат). Замечательно, что в этом случае импульсы становятся интегралами движения, т. е. сохраняются во времени. Действительно, как мы уже говорили, изменение импульсов во времени в силу канонических уравнений зависит от производной гамильтониана по координатам. Если эта производная обращается в нуль, то импульсы становятся интегралами движения. С аналогичной ситуацией мы сталкиваемся при рассмотрении системы «свободная частица». Для того чтобы перейти к этой системе, необходимо с помощью подходящего преобразования «исключить» взаимодействие. Условимся называть динамические системы, для которых такой переход возможен, интегрируемыми системами. Таким образом, любую интегрируемую систему можно представить в виде совокупности подсистем. Каждая из таких подсистем изменяется в полной изоляции от других, независимо от них, совершая в процессе своей эволции вечное и неизменное движение, которое Аристотель приписы вал небесным телам (см. рис. 1).
Мы уже упоминали о том, что в динамике «все задано». В случае гамильтоновой динамики это означает, «its с самого первого мгновения значений различных инвариантов движения заданы. Ничего нового не может ни «случиться», ни «произойти». Так в гамильтоновой динамике мы сталкиваемся с одним из тех драматических моментов в истории науки, когда описание природы сводится почти к статической картине. Действительно, при разумной замене переменных мы можем добиться, чтобы все взаимодействия исчезли. Долгое время считалось, что интегрируемые системы, сводимые к свободным частицам, являются прототипами всех динамических систем. Поколения физиков и математиков не покладая рук трудились над тем, чтобы найти для каждого типа динамических систем «правильные» переменные, которые позволили бы исключить взаимодействия. Одним из наиболее изученных примеров может служить задача трех тел, которую с полным основанием можно назвать наиболее важной задачей в истории динамики. Одним из частных случаев задачи трех тел является движение Луны, испытывающей притяжение как со стороны Земли, так и со стороны Солнца. Были предприняты бесчисленные попытки свести эту систему к интегрируемой, но в конце XIX в. Брунс и Пуанкаре доказали, что это невозможно. Их результат был полной неожиданностью для современников и, по существу, возвестил о наступлении бесповоротного конца всех простых экстраполяции динамики на основе интегрируемых систем. Открытие Брунса и Пуанкаре показало, что динамические системы не изоморфны. Простые интегрируемые системы допускают разложение на невзаимодействующие подсистемы, но в общем случае исключить взаимодействия невозможно. Хотя в то время значение открытия Брунса и Пуанкаре не было оценено по достоинству, оно означало отказ от незыблемого убеждения в однородности динамического мира, в его сводимости к интегрируемым системам. Природа как эволюционирующая система с многообразно взаимодействующими подсистемами упорно сопротивлялась попыткам сведения ее к универсальной схеме, не содержащей к тому же времени.
Это положение подтверждали и другие факты. Мы уже упоминали о том, что траектории динамической системы соответствуют детерминистическим законам: коль скоро начальное состояние задано, динамические законы движения позволяют вычислить траекторию
для любого момента времени в будущем и в прошлом. Однако в некоторых особых точках траектория может становиться внутренне неопределенной. Например, жесткий маятник может совершать движения двух качественно различных типов: либо колебаться, либо вращаться вокруг точки подвеса. Если начальный толчок достаточно силен для того, чтобы привести маятник в вертикальное положение с нулевой скоростью, то направление, в котором он упадет, и, следовательно, характер движения не определенны. Достаточно сообщить маятнику бесконечно малое возмущение, чтобы он начал вращаться или совершать колебания вокруг точки подвеса. (Подробно проблема неустойчивости движения, с которой мы здесь сталкиваемся, будет рассмотрена в гл. 9.)
Интересно, что еще Максвелл придавал особым точкам большое значение. Описывая взрыв ружейного пороха, он замечает:
«Во всех этих случаях имеется одно общее обстоятельство: система обладает некоторым количеством потенциальной энергии, способным трансформироваться в движение, но не трансформирующимся до тех пор, пока система не достигнет определенной конфигурации, для перехода в которую требуется совершить работу, в одних случаях бесконечно малую, но, вообше говоря, не находящуюся в определенной пропорции к энергии, выделяемой вследствие перехода. Примерами могут служить скала, отделившаяся от основания в результате выветривания и балансирующая на выступе горного склона, небольшая искра, поджигающая огромный лес, слово, ввергающее мир в пучину войны, крупица вещества, лишающая человека воли, крохотная спора, заражающая посевы картофеля, геммула*, превращающая нас в философов или идиотов. У каждого существования выше определенного ранга имеются свои особые точки; чем выше ранг, тем их больше. В этих точках воздействия, физическая величина которых слишком мала для того, чтобы существо конечных размеров принимало их во внимание, могут приводить к необычайно важным последствиям. Всеми великими результатами человеческой деятельности мы обязаны искусному использованию таких особых состояний, когда такая возможность предоставлялась»1'.
Идеи Максвелла не получили дальнейшего развития из-за отсутствия подходящих математических методов для идентификации систем с особыми точками и отсутствия химических и биологических знаний, позволяющих, как мы увидим из дальнейшего, более глубоко проникнуть в понимание той весьма важной роли, которую играют особые точки.
Как бы то ни было, со времен монад Лейбница (см. заключительную часть разд. 4) и поныне (достаточно упомянуть хотя бы стационарные состояния электронов в модели Бора, см. гл. 7) интегрируемые системы служили великолепной моделью динамических систем, и физики пытались распространить их свойства, т. е. свойства весьма специального класса гамильтоновых уравнений, на все процессы, протекающие в природе. Такое стремление вполне понятно. Вплоть до недавнего времени интегрируемые системы были единственным основательно изученным классом динамических систем. Не следует упускать из виду и притягательную силу которой обладает в наших глазах любая замкнутая система, позволяющая ставить все имеющие смысл задачи. Динамика является адекватным языком. Будучи полной, она, по определению, коэкстенсивна тому миру, который она описывает. Предполагается, что все задачи, простые и сложные, напоминают одна другую, поскольку любую из них всегда можно представить в общем виде. Трудно поэтому устоять перед искушением и не прийти к выводу о том, что все задачи имеют много общего с точки зрения их решений и что в результате более или менее сложной процедуры интегрирования не может появиться ничего качественно нового. Ныне, мы знаем, что такое представление о внутренней однородности динамических систем не соответствует действительности. Кроме того, механический мир был приемлем, покуда все наблюдаемые так или иначе были связаны с движением. Теперь мы столкнулись с другой ситуацией. Например, нестабильные частицы обладают энергией, которую можно связать с движением, но они же обладают и временем жизни, а это наблюдаемая совершенно другого типа, более тесно связанная (как будет показано в гл. 4 и 5) с необратимыми процессами. Необходимость введения в теоретические пауки новых наблюдаемых была и поныне остается одной из движущих сил, вынуждающих пас выходить за рамки механистического мировоззрения.
4. Демон Лапласа
Экстраполяция динамического описания, которое мы достаточно подробно обсудили выше, имеет наглядный образ-демон, вымышленный Лапласом и обладающий способностью, восприняв в любой данный момент времени положение и скорость каждой частицы во Вселенной, прозревать ее эволюцию как в будущем, так и в прошлом. Разумеется, никто никогда и не помышлял о том, чтобы физик мог пользоваться всей полнотой знания, которой располагал демон Лапласа. Самому Лапласу это вымышленное существо понадобилось лишь для того, чтобы наглядно продемонстрировать степень нашей неосведомленности и необходимость в статистическом описании некоторых процессов. Проблематика демона Лапласа связана не с вопросом о том, возможно ли детерминистическое предсказание хода событий в действительности, а в том, возможно ли оно de jure. Именно такая возможность заключена в механистическом описании с его характерным дуализмом, основанным на динамическом законе и начальных условиях. То, что развитием динамической системы управляет детерминистический закон (хотя на практике наше незнание начальных состояний исключает всякую возможность детерминистических предсказаний), позволяет «отличать» объективную истину о системе, какой она представлялась бы демону Лапласа, от эмпирических ограничений, вызванных нашим незнанием. В контексте классической динамики детерминистическое описание может быть недостижимым на практике, тем не менее оно остается пределом, к которому должна сходиться последовательность все более точных описаний.
Именно непротиворечивость дуализма между динамическим законом и начальными условиями поставлена под сомнение возрождением классической механики, о котором мы расскажем в гл. 9. Как показали исследования, движение может стать столь сложным, а траектории столь причудливыми, что никакое сколь угодно точное наблюдение не позволит точно задать начальные условия. Именно в этом - уязвимое звено дуализма, на котором зиждилась классическая механика. Мы можем предсказывать лишь поведение пучка траектории в среднем.
Современная наука родилась на обломках анимистического союза с природой. В аристотелевском мире человек занимает место и живого, и познающего существа. Аристотелевский мир сотворен по человеческой мерке. Первый экспериментальный диалог между человеком и природой получил свое социальное и философское обоснование частично в рамках другого союза, на этот раз с рациональным богом христианства. В той мере, в какой динамика стала и по-прежнему остается моделью науки, некоторые последствия этой исторически сложившейся ситуации сохраняются и поныне.
Наука все еще выступает с претензией на ниспосланное свыше в пророческом откровении описание мироздания, созерцаемого с некоей божественной или демонической точки зрения. Это - наука Ньютона, нового Моисея, которому была явлена истина мира. Такая наука, постигающая по наитию тайны мироздания, выглядит чуждой какому-либо социальному и историческому контексту, который позволил бы идентифицировать ее как результат деятельности человеческого общества. Божественное откровение такого рода прослеживается на протяжении всей истории физики. Оно неизменно сопутствует любой концептуальной инновации во всех тех случаях, когда физика, казалось, почти достигла желаемой унификации и была готова набросить на себя благонамеренную маску позитивизма. И всякий раз физики повторяли то, что так четко сформулировал сын Ампера: это слово (будь то всемирное тяготение, энергия, теория поля или элементарные частицы) есть Слово творения. Во все времена (во времена Лапласа, в конце XIX в. и даже ныне) физики заявляли, что их наука - законченная книга или книга, близкая к завершению. Всегда у природы оставался лишь последний, стойко обороняющийся оплот, с падением которого она должна была стать беззащитной, капитулировать и пасть ниц перед нашим знанием. Сами того не ведая, физики повторяли древние ритуальные заклинания. Они возвещали о пришествии нового Моисея и о наступлении в науке нового мессианского периода.
Можно было бы возражать против пророчеств, несколько наивного энтузиазма. Несомненно одно: диалог с природой неизменно происходил и происходит в
одном и том же русле наряду с поиском нового теоретического языка, новых вопросов и новых ответов. Но мы не приемлем жесткого разграничения между тем, что реально делает ученый, и тем, как он судит о своей работе, интерпретирует и ориентирует ее. Принять подобное разграничение означало бы низвести науку до внеисторического накопления результатов и полностью игнорировать то, к чему стремятся ученые, - столь вожделенному для них идеалу знания, причины, по которым они время от времени конфликтуют или утрачивают способность к общению между собой15.
Но это еще не все. Эйнштейн сформулировал, в чем состоит загадка, порожденная мифом о современной науке. Самое большое чудо, утверждал Эйнштейн, единственное, чему следует удивляться, заключается в том, что наука вообще существует, что мы обнаруживаем конвергенцию природы и человеческого разума. Аналогичным образом, когда в конце XIX в. ДюбуаРеймон превратил демона Лапласа в воплощение логики современной науки, он произнес: «Ignoramus et ignorabimus!»* Иными словами, мы навсегда останемся в неведении относительно взаимосвязи между миром науки и разумом, знающим, познающим и создающим эту науку16.
Природа говорит с нами на тысячу голосов, и мы лишь недавно начали ее слушать. Тем не менее на протяжении почти двух столетий демон Лапласа тягостно поражал наше воображение, вызывая ночные кошмары, в которых все вещи казались не имеющими значения. Если бы мир действительно был таким, что демон (т. е. существо в конечном счете подобное нам, обладающее той же самой наукой, но наделенное несравненно большей остротой органов чувств и способностью мгновенно производить сложнейшие вычисления) мог, зная состояние Вселенной в один произвольно выбранный миг, вычислить ее прошлое и будущее (если между простыми системами, доступными нашему описанию, и сложными системами, для описания которых необходим демон, не существует никаких качественных различий), то мир есть не что иное, как грандиозная тавтология В возможности такого предложения и заключается тот вызов науке, который мы унаследовали от наших предшественников, те чары, которые мы пытаемся развеять сегодня.
Глава 3 ДВЕ КУЛЬТУРЫ
1. Дидро и дискуссия о живом
В своей интересной книге по истории идеи прогресса Нисбет пишет:
«На протяжении почти трех тысячелетий ни одна идея не была более важной или даже столь же важной, как идея прогресса в западной цивилизации»1.
И не было для идеи прогресса более сильной поддержки н опоры, чем накопление знания. Величественное зрелище постепенного роста знания являет собой великолепный пример успешной коллективной деятельности человеческого сообщества.
Вспомним хотя бы замечательные открытия, сделанные в конце XVIII - начале XIX в.: теории теплоты, электричества, магнетизма и оптику. Неудивительно поэтому, что идея научного прогресса, сформулированная еще в XVIII в., стала доминирующей идеей XIX в. Однако, как мы уже отмечали, положение науки в западной культуре все еще оставалось нестабильным. И это обстоятельство придает драматический аспект истории идей с высоких позиций Просвещения.
Мы уже сформулировали альтернативу: либо принятие науки вместе со всеми ее отчуждающими выводами, либо обращение к антинаучной метафизике. Мы отмечали также изолированность, ощущаемую современным человеком, одиночество, о котором писали Паскаль, Кьеркегор и Моно. Упоминали мы и об антинаучных следствиях из метафизики Хайдеггера. Теперь мы хотим более подробно обсудить некоторые аспекты истории западноевропейской мысли от Дидро, Канта и Гегеля до Уайтхеда и Бергсона. Все из названных нами философов пытались проанализировать и указать
пределы, до которых простирается современная наука, а также открыть новые перспективы, которые представляются в корне чуждыми современной науке. Ныне считается общепризнанным, что эти попытки большей частью закончились неудачей. Мало кто, например, согласится принять кантовское деление мира на сферу феноменов и сферу ноуменов или бергсоновскую «интуицию» в качестве альтернативного пути к знанию, значение которого было бы соизмеримо со значением науки. Тем не менее эти попытки являются неотъемлемой частью нашего наследия. Игнорируя их, невозможно понять историю идей.
Мы обсудим также научный позитивизм, основанный па проведении различия между тем, что истинно, и тем, что полезно науке. На первый взгляд может показаться, что подобный позитивистский взгляд противоречит уже упоминавшимся нами метафизическим взглядам, которые И. Берлин охарактеризовал как контрпросвещение. Однако оба эти взгляда приводили к одному и тому же выводу: пауку как базис истинного знания необходимо отвергнуть, даже если мы одновременно признаем ее практическую ценность или отрицаем, как это делают позитивисты, возможность любой другой когнитивной деятельности.
Не помня обо всем этом, невозможно понять, что поставлено на карту. В какой мере паука является основой познаваемости всей природы, не исключая человека? Что означает ныне идея прогресса?
Дидро, одна из наиболее выдающихся фигур Просвещения, заведомо не был представителем антинаучного мышления. Напротив, его вера в науку, в возможности знания была безграничной. Именно поэтому он считал, что, прежде чем возлагать надежды на достижение самосогласованного видения мира, науке необходимо понять, что такое жизнь.
Мы уже упоминали о том, что рождение современной науки ознаменовалось отказом от виталистского начала и от аристотелевских конечных причин. Однако вопрос об организации живой материи не был решен и превратился в вызов современной науке. В момент наивысшего триумфа ньютоновской науки Дидро счел необходимым обратить внимание современников на то, что физика оттеснила проблему жизни на второй план. Дидро изобразил эту проблему как навязчивое виде-
128
ние, преследующее физиков во сне, ибо наяву им некогда размышлять над ней. Вот как описан у Дидро сон физика Д'Аламбера:
«Живая точка... Нет, не так! Сначала вообще ничего, затем живая точка. К ней присоединяется еще одна, потом другая, и после серии таких присоединений возникает организм, представляющий собой одно целое, ибо я единое целое, в этом у меня нет ни малейших сомнений... (говоря так, он внимательно прислушивается к ощущениям во всем теле). Но как же все-таки возникает этот единый организм»?
И далее:
«Послушайте, господин Философ! Я могу понять, что такое агрегат, ткань, состоящая из крохотных чувствительных телец, но живой организм!.. Но целое, система, представляющая собой единый организм, индивидуум, сознающий себя как единое целое, выше моего понимания! Не понимаю, не могу понять, что это такое!»2
В воображаемой беседе с Д'Аламбером Дидро, доказывая неадекватность механистического объяснения жизни, для вящей убедительности говорит от первого лица:
«Взгляните на это яйцо. С ним вы можете ниспровергнуть все школы в теологии и все церкви в мире. Что такое это яйцо? Бесчувственная масса до того, как в него попадает зародыш... С помощью чего эта масса обретает новую организацию, чувствительность, жизнь? С помощью тепла. Что рождает в ней тепло? Движение. Какие последовательные действия оно оказывает? Вместо того чтобы отвечать мне, присядьте, и пусть эти действия произойдут па наших глазах одно за другим. Сначала появляется пятнышко. Оно движется, затем появляется нить. Она растет и приобретает окраску, формируется плоть - становятся видны клюв, кончики крыльев, глаза, ноги, желтоватое вещество, которое раскручивается и превращается во внутренности, и перед вами живое существо... Но вот стенка яйца разрушена, и возникает птица. Она ходит, летает, ощущает боль, убегает, возвращается, жалуется, страдает, любит, испытывает желания, радуется, переживает все, что переживаете вы, и делает все, что делаете вы сами. Станете ли вы утверждать вместе с Декартом, что это всего-навсего не более чем имитационная машина? Ну что же, тогда над вами будут смеяться даже Малые Дети, и философы возразят вам, что если это машина, то в таком случае и вы сами машина! Если же вы согласитесь с тем, что единственное различие между вами и животным заключается в организации, то вы проявите осмотрительность и разумность и поступите честно. Но тогда вопреки сказанному вами можно будет сделать вывод о том, что, взяв одно инертное вещество, определенным образом организованное и оплодотворенное другим инертным веществом, и подвергнув его нагреванию и движению, вы получите чувствительность, жизнь, память, сознание, страсти, мышление... Прислушайтесь внимательно к вашим собственным аргументам, и вы почувствуете, насколько они слабы и неубедительны. Вы придете к выводу, что, отвергая простую гипотезу, которая объясняет все, - гипотезу о чувствительности как об общем свойстве всякой материи или результате организации материи, - вы бросаете вызов здравому смыслу и погружаетесь в трясину загадок, противоречий и нелепостей»3.
В противоположность рациональной механике, утверждающей, что материальная природа есть не что иное, как инертная масса и движение, Дидро апеллирует к одному из самых древних источников вдохновения физиков, а именно: к росту, дифференциации и организации эмбриона. Образуется плоть, образуются клюв, глаза и внутренности. Постепенная организация происходит в биологическом «пространстве»; формы, дифференцированные из внешне однородной среды, возникают в нужное время и в нужном месте в результате действия сложных и согласованных между собой процессов.
Может ли инертная масса, пусть даже ньютоновская, «одушевленная» силами гравитационного взаимодействия, быть отправным пунктом для организованных активных локальных структур? Как мы уже знаем, ньютоновская система - это система мира: никакая локальная конфигурация тел не может претендовать на особую выделенность, любая конфигурация есть не более чем случайное близкое расположение тел, связанных общими соотношениями.
Но Дидро не отчаивался. Наука только начинается, рациональная механика - лишь первая чрезмерно абстрактная попытка создания теории. Зрелище развивающегося зародыша вполне достаточно, чтобы опровергнуть претензии рациональной механики на универсальность. Именно поэтому Дидро сравнивает труды великих математиков Эйлера, Бернулли и Д'Аламбера с египетскими пирамидами, внушающими благоговейный трепет свидетельствами гения их строителей, ныне безжизненными руинами, одинокими и заброшенными. Истинная наука, живая и плодотворная, будет продолжена, если не здесь, то где-нибудь еще4.
Более того, Дидро считал, что начало новой науки об организованной живой материи уже положено. Его друг Гольбах прилежно изучает химию, сам Дидро избирает медицину. Основная проблема как химии, так и медицины состоит в том, чтобы заменить инертную материю активной, способной самоорганизовываться и производить живые существа. Дидро провозглашает, что материя должна быть чувствительной. Даже камень обладает чувствительностью в том смысле, что молекулы, из которых он состоит, активно ищут одни комбинации и избегают других, проявляя тем самым свои «симпатии» и «антипатии». Но в таком случае чувствительность целого организма есть просто сумма чувствительностей его частей, подобно тому как рой пчел с их согласованным в целом поведении есть результат взаимодействия пчел между собой. Отсюда Дидро делает вывод: человеческая душа существует ничуть не в большей степени, чем душа пчелиного улья5.
Таким образом, виталистский протест Дидро против физики и универсальных законов движения проистекает из его отказа от любой формы спиритуалистского дуализма. Природу надлежит описывать так, чтобы стало понятно само существование человека. В противном случае научное описание, как это случилось с механистическим мировоззрением, обретает своего двойника в человеке как автомате, наделенном душой и поэтому чуждом природе.
Двоякая основа натурализма - материалистическая, химическая, и вместе с тем медицинская, которую Дидро противопоставлял физике своего времени, вновь проявилась в XVIII в. В то время как биологи строили умозрительные заключения о животном как машине, предсуществованни зародышей и цепи живых организмов, т. е. размышляли над проблемами, близкими теологии6, химикам и медикам приходилось непосредственно сталкиваться со сложностью реальных процессов и в химии, и в жизни. Химия и медицина в конце XVIII в. были привилегированными науками для тех, кто сражался с esprit de systeme (духом системы) физиков в пользу науки, способной учитывать разнообразие происходящих в природе процессов. Физик, не по возрасту развитое дитя, мог позволить себе витать в эмпиреях чистого духа, но врач или химик должен был быть человеком с практической хваткой: уметь расшифровывать хитросплетение признаков, отыскивать истину по едва заметным следам. В этом смысле химия и медицина были искусствами. От тех, кто решил посвятить себя химии и медицине, требовались способность здраво мыслить, трудолюбие и цепкая наблюдательность. «Химия - это страсть безумца» - к такому выводу пришел к своей статье, написанной для «Энциклопедии» Дидро, Венель, приведя немало красноречивых доводов в защиту химии от имперских замашек погрязших в абстракциях ньютонианцев7. Протесты химиков и медиков против сведения физиками процессов жизнедеятельности к мерному тиканью механизмов и спокойному проявлению универсальных законов приобрели во времена Дидро широкое распространение. Вспомним хотя бы о такой замечательной фигуре, как отец витализма и создатель первой последовательной химической систематики Шталь.
По Шталю, универсальные законы применимы к живому лишь в том смысле, что они обрекают все живое на смерть и разрушение. Материя, из которой состоят живые существа, настолько хрупка, настолько легко поддается распаду, что, если бы ею управляли только универсальные законы физики, то она ни на миг не могла бы противостоять разложению и тлену. Если же живое существо вопреки общим законам физики выживает (сколь ни коротка его жизнь по сравнению со сроком жизни камня или какого-нибудь другого неодушевленного предмета), то происходит это потому, что оно несет в себе «принцип сохранения», поддерживающий гармоническое равновесие строения и структуры его тела. Поразительная долговечность живого тела, если учесть необычайную хрупкость составляющей его материи, свидетельствует, таким образом, о действии «природного, перманентного, имманентного принципа», особой причины, не имеющей ничего общего с законами
неодушевленной материи и оказывающей непрестанное сопротивление не прекращающемуся ни на миг разрушению, неизбежно проистекающему из этих законов8.
Такой анализ жизни одновременно и близок к нам, и далек от нас. Он близок к нам пронизывающим его острым сознанием выделенности и хрупкости такого явления, как жизнь. Вместе с тем он далек от нас потому, что, подобно Аристотелю, Шталь определяет жизнь в статических терминах, в терминах сохранения, а не становления и эволюции. Тем не менее терминология, которой пользовался Шталь, встречается и в современной биологической литературе. Кому, например, не приходилось читать о ферментах, «борющихся» с разложением и позволяющих организму противостоять смерти, на которую он неминуемо обречен физикой. И в этом случае биологическая организация нарушает законы природы, и лишь «нормальная» тенденция приводит живой организм к смерти (см. гл. 5).
Витализм Шталя был верен до тех пор, пока законы физики отождествлялись с эволюцией, ведущей к разложению и дезорганизации. Ныне на смену «виталистскому принципу» пришла последовательность невероятных мутаций, сохраняющаяся в генетическом коде, который «управляет» структурой живого. Тем не менее некоторые экстраполяции, берущие начало в молекулярной биологии, устанавливают для жизни «черту оседлости» лишь у самой границы естественного, иными словами, трактуют жизнь как нечто совместимое с основными законами физики, но имеющее чисто случайный характер. Наиболее явно эту точку зрения сформулировал Моно: жизнь «не следует из законов физики, но совместима с ними. Жизнь - событие, исключительность которого необходимо сознавать».
Но переход от материи к жизни можно рассматривать и с иной точки зрения. Как мы увидим в дальнейшем, вдали от равновесия могут возникать новые процессы самоорганизации (подробно эти вопросы мы обсудим в гл. 5 и 6). При таком подходе биологическая организация предстает перед нами как природный процесс.
Однако проблематика жизни претерпела существенные изменения задолго до появления тех научных идей, о которых мы только что упомянули. Как показывает
романтическое движение, тесно связанное с контрпросвещением, в Европе, политическая карта которой была перекроена, изменился и интеллектуальный ландшафт.
Сталь критиковал метафору «автомат» применительно к живому организму потому, что в отличие от живого существа назначение автомата не лежит в нем самом. Организация автомата привнесена извне его создателем. Дидро, далекий от мысли помещать исследование живого за пределы досягаемости естествознания, видел в изучении живого будущее науки, пока пребывающей в младенческом состоянии. Через несколько лет подобные взгляды были поставлены под сомнение9. Механическое изменение, активность, описываемая законами движения, стали восприниматься как синоним искусственного и смерти, Противоположность механическому движению составляли такие понятия, как «жизнь», «спонтанность», «свобода» и «дух», объединенные в уже хорошо известный нам комплекс. Такое противопоставление имело параллель: противоположность между вычислением и всякого рода деятельностью с вещественными предметами, с одной стороны, и ничем не стесненной спекулятивной деятельностью, с другой. Посредством умозрения философ стремился в своей духовной деятельности постичь самые сокровенные глубины природы. Что же касается естествоиспытателя, то природа интересовала его лишь как множество объектов, над которыми можно производить манипуляции и измерения. Тем самым он получал возможность овладеть природой, подчинить ее себе и управлять ею, но не мог понять ее. Понимание природы оказывалось недостижимым для науки.
Подробное изложение истории философии отнюдь не входит в наши намерения. Мы хотим лишь обратить внимание на то, что критика естествознания со стороны философов стала в то время существенно более резкой, напоминая некоторые современные формы антинауки. Речь шла не об опровержении весьма наивных и недальновидных обобщений, которые, будь они произнесены вслух, заставили бы, по выражению Дидро, засмеяться и малых детей, а об опровержении подхода, давшего экспериментальное и математическое знание природы. Научное знание подвергалось критике не по причине его ограниченности, а в силу самой его природы, самого способа его получения. Одновременно провозглашалось истинным конкурирующее знание, основанное на совершенно ином подходе. Знание фрагментировалось, делилось на два противоположных способа познания.
С философской точки зрения переход от Дидро к романтикам или, точнее, от одной из этих двух критических позиций по отношению к естествознанию к другой может быть найден в трансцендентальной философии Канта, сущность которой состоит в том, что кантовская критика отождествляла науку в целом с ее ньютоновской реализацией. Тем самым кантовская критика заклеймила как невозможную любую оппозицию классической науке, которая не была оппозицией самой науке. Любая критика в адрес ньютоновской физики, по Канту, должна рассматриваться как имеющая своей целью принизить рациональное понимание природы в пользу другой формы знания. Избранный Кантом подход породил многочисленные споры и дискуссии, не затухающие и поныне. Именно поэтому мы сочли необходимым включить в нашу книгу краткий очерк философских взглядов Канта, изложенных в его труде «Критика чистого разума», в котором, в отличие от прогрессистских взглядов Просвещения, содержится замкнутая концепция науки, устанавливающая пределы познаваемости мира. Суть этой концепции мы только что охарактеризовали.
2. Критическая ратификация научного знания Кантом
Как восстановить порядок в интеллектуальном ландшафте, утраченный с исчезновением бога, который мыслился как некий рациональный принцип, устанавливавший связь между наукой и природой? Могли ли ученые докопаться до глобальной истины, если уже никто не мог утверждать (разве что лишь метафорически), что наука занимается расшифровкой слова творения? Бог безмолвствовал или по крайней мере не изрекал ни слова на том языке, на котором мыслил человеческий разум. Что осталось от нашего субъективного опыта в природе, из которой исключено время? Каков тогда смысл таких понятий, как «свобода», «предопределение» или «этические ценности»?
По мнению Канта, Существуют два уровня реальности: феноменальный, соответствующий науке, и ноуменальный, отвечающий этике. Феноменальный порядок создается человеческим разумом. Ноуменальный порядок трансцендентален по отношению к человеческому разуму; он соответствует духовной реальности, на которую опирается этическая и религиозная жизнь человека. Предложенное Кантом решение в определенном смысле единственно возможно для тех, кто утверждает и реальность этики, и реальность объективного мира в том виде, как его отражает классическая наука. Вместо бога источником порядка, воспринимаемого человеком в природе, становится сам человек. Кант считает «законным» и научное знание, и отчуждение человека от описываемого наукой мира феноменов. В этом отношении философия Канта выражает в явном виде философское содержание классической науки.
Предмет критической философии Кант определяет как трансцендентальный. Критическая философия не занимается рассмотрением объектов опыта, а исходит из того априорного факта, что систематическое знание таких объектов возможно (доказательство чему Кант усматривает в существовании физики), и устанавливает априорные условия возможности такого рода знания.
Для этого, по Канту, необходимо ввести различие между ощущениями, воспринимаемыми нами непосредственно из внешнего мира, и объективным «рациональным» знанием. Объективное знание не пассивно: оно формирует свои объекты. Считая некий феномен объектом опыта, мы априори (прежде чем он будет дан нам в действительном опыте) предполагаем, что этот феномен удовлетворяет определенной совокупности принципов. Поскольку мы мыслим феномен как возможный объект знания, он является продуктом синтетической деятельности нашего рассудка. В объектах нашего знания мы находим самих себя, и, следовательно, ученый сам является источником тех универсальных законов, которые он открывает в природе.
Априорные условия опыта являются одновременно и условиями существования объектов опыта. В этом знаменитом утверждении заключена суть «коперниканской революции», произведенной в философии «трансцендентальным» познанием Канта. Субъект более не «обращается» вокруг своего объекта, пытаясь открыть законы, управляющие объектом, или язык, на котором объект допускает расшифровку. Субъект теперь сам находится в центре, диктуя оттуда свои законы, и воспринимаемый субъектом мир говорит на его, субъекта, языке. Неудивительно поэтому, что ньютоновская наука способна описывать мир с внешней, почти божественной точки зрения!
То, что все чувственно воспринимаемые феномены подчиняются законам нашего разума, отнюдь не означает, будто конкретное знание таких объектов бесполезно. По Канту, наука не вступает в диалог с природой, а навязывает природе свой собственный язык. Тем не менее в каждом случае необходимо раскрывать специфику «сообщения», передаваемого на этом общем языке. Одно лишь знание априорных понятий пусто и бессодержательно.
Символ научного мифа - демон Лапласа, - с точки зрения Канта, есть иллюзия, но иллюзия рациональная. Хотя своим появлением она обязана предельному переходу и потому незаконна, тем не менее эта иллюзия отражает вполне законное убеждение, являющееся движущей силой науки, - убеждение в том, что природа в ее целостности послушно подчиняется тем принципам, которые столь успешно открывают ученые. Куда бы ни направила наука свои стопы, о чем бы она ни вопрошала, получаемый ею ответ всегда будет если не тот же самый, то по крайней мере того же рода. Существует единый универсальный синтаксис, включающий в себя все возможные ответы.
Тем самым трансцендентальная философия узаконивает притязания физиков на открытие окончательной формы всякого положительного знания. В то же время трансцендентальная философия ставит философию в господствующее положение по отношению к естествознанию. Отпадает необходимость в поиске философского значения результатов научной деятельности: с трансцендентальной точки зрения эти результаты не приводят к истинно новому знанию. Предметом философии является наука, а не ее результаты. Наука, рассматриваемая как повторяющаяся и замкнутая деятельность, служит надежным фундаментом трансцендентальной рефлексии.
Однако, узаконивая все притязания науки, критическая философия Канта в действительности ограничивает научную деятельность проблемами, которые можно считать и поверхностными, и несложными. Она обрекает науку на скучный труд по расшифровке монотонного языка феноменов, приберегая для себя вопросы, связанные с «предназначением» человека на Земле: что может знать человек, что он должен делать, на что он может надеяться. Мир, изучаемый наукой, мир, доступный положительному знанию, есть «всего лишь» мир феноменов. Ученый не только не может познать «вещи в себе», но даже задаваемые им вопросы не имеют никакого отношения к реальным проблемам человечества. Красота, свобода и этика не могут быть объектами положительного знания. Они принадлежат миру ноуменов, т. е. области философии, и никак не связаны с миром феноменов.
Исходный пункт критической философии Канта, его акцент на активной роли человека в научном описании, вполне приемлем для нас. Многое уже было сказано об экспериментировании как искусстве выбора ситуаций, гипотетически подпадающих под действие исследуемого закона, и воссозданиях их в условиях, позволяющих получить ясный экспериментальный ответ на поставленный вопрос. Каждый эксперимент предполагает какие-то принципы, и эти принципы не могут быть обоснованы данным экспериментом. Кант, однако, как мы видели, пошел гораздо дальше. Он отрицает разнообразие возможных научных точек зрения, разнообразие предполагаемых принципов. В соответствии с мифом классической науки Кант стоит за единственный язык, дешифруемый наукой в природе, единственную совокупность априорных принципов, заложенных в основе физики и подлежащих отождествлению с категориями человеческого познания. Тем самым Кант отрицает необходимость активного выбора со стороны ученого, необходимость отбора проблематической ситуации, соответствующей конкретному теоретическому языку, на котором могут быть заданы определенные вопросы и предприняты попытки получить па них экспериментальные ответы.
Критическая ратификация Кантом научного знания определяет научную деятельность как безмолвную и систематическую, замкнутую в себе. Поступая так, философия санкционирует и увековечивает пропасть, отделяющую ее от естествознания, принижая значение всей области положительного знания и отказываясь от него в пользу естествознания. Она оставляет за собой лишь область свободы и этики, мыслимую как нечто всецело чуждое природе.
3. Натурфилософия. Гегель и Бергсон
Достигнутое Кантом примирение естествознания и философии оказалось непрочным. Философы-посткаитианцы нарушили непродолжительное «перемирие» в пользу новой философии науки, основанной на допущении о существовании нового пути к знанию, отличного от науки, а в действительности враждебного ей. Ничем не подкрепляемые умозрительные построения сбросили узы стеснявшей их высшей инстанции - экспериментального диалога, что повлекло за собой самые печальные последствия для диалога между естествоиспытателями и философами. Для большинства ученых натурфилософия стала синонимом напыщенных, нелепых спекуляций, произвольно обращающихся с фактами и то и дело опровергаемых фактами. В то время для большинства философов натурфилософия стала олицетворением тех опасностей, которыми чреваты обращение к тем или иным философским проблемам природы и попытки конкурировать с естествознанием. Раскол между естествознанием и философией, а также всеми науками гуманитарного цикла еще больше усугубил взаимную неприязнь и взаимные опасения.
В качестве примера спекулятивного подхода к природе мы прежде всего упомянем Гегеля. Философия природы Гегеля имеет космические масштабы. В его системе предусмотрены возрастающие уровни сложности, а цель природы состоит в конечной самореализации ее духовного начала. История природы выполняет свое предназначение с появлением человека, т е. Духа, познающего самого себя.
Гегелевская философия природы последовательно включает в себя все, что отрицалось ньютоновской наукой. В частности, в основе ее лежит качественное различие между простым поведением, описываемым механикой, и поведением более сложных систем, таких, как живые существа. Гегелевская философия природы отрицает возможность сведения этих уровней друг к другу, тй есть отвергает саму мысль о том, что различия между ними лишь кажущиеся и что природа в основе своей однородна и проста. Она утверждает существование иерархии, в которой каждый уровень предполагает предшествующий.
В отличие от ньютоновских авторов romans de la matiere* широких всеобъемлющих полотен, повествующих обо всем на свете, начиная с гравитационного взаимодействия и кончая человеческими страстями, Гегель отчетливо сознавал, что введенные им различия между уровнями (которые мы независимо от собственной интерпретации Гегеля можем считать соответствующими идее возрастающей сложности в природе и понятию времени, обогащающемуся содержанием с каждым переходом на более высокий уровень) идут против математического естествознания его времени. Поэтому Гегелю было необходимо ограничить значимость этой науки, показать, что математическое описание ограничивается самыми тривиальными ситуациями. Механика поддается математизации потому, что она наделяет материю только пространственно-временными свойствами. «Сам по себе кирпич не убивает человека, а производит это действие лишь благодаря достигнутой им скорости, т. е. человека убивают пространство и время»10.
Человека убивает то, что мы называем кинетической энергией. mv2/2 - абстрактная величина, в которой масса и скорость взаимозаменяемы: один и тот же смертельный удар будет нанесен и в том случае, если увеличить массу, и в том случае, если увеличить скорость кирпича.
Именно эту взаимозаменяемость, перестановочность Гегель выдвигает в качестве условия математизации, условия, которое не выполняется более при переходе от механического уровня описания к более высокому уровню, включающему более широкий спектр физических свойств.
В некотором смысле система Гегеля является вполне последовательным философским откликом на ключевые вопросы проблемы времени и сложности. Однако для поколений естествоиспытателей она была лишь предметом неприязни и презрения. По прошествии некоторого времени внутренние трудности философии Гегеля усугубились старением той естественнонаучной основы, на которой была воздвигнута его система: отвергая ньютоновскую систему, Гегель опирался па естественнонаучные представления своего времени. Но именно этим представлениям суждено необычайно быстро быть преданными забвению. Трудно представить себе менее удачное время для поиска экспериментальной и теоретической основы для альтернативы классической науке, чем начало XIX в, Хотя этот период характеризуется значительным расширением границ экспериментальной науки (см. гл. 4) и повсеместным распространением теорий, по крайней мере внешне противоречивших ньютоновской науке, большинство из этих теорий были отвергнуты уже через несколько лет после их появления.
Когда в конце XIX в. Бергсон предпринял поиск приемлемой альтернативы науке своего времени, он обратился к интуиции как форме чисто умозрительного познания, но представил ее совершенно иначе, чем это делали романтики. Бергсон в явном виде утверждал, что интуиция неспособна породить систему, а порождает лишь результаты, всегда частичные и не поддающиеся обобщению, формулировать которые надлежит с вечичайшей осторожностью. Наоборот, обобщение есть атрибут «разума», величайшим достижением которого является классическая наука. Бергсоновская интуиция - это концентрированное внимание, все более трудная попытка глубже проникнуть в своеобразие вещей. Разумеется, для того чтобы быть коммуницируемой, интуиции необходимо обратиться к языку: «Чтобы быть переданной, она воспользуется идеями в качестве передаточного средства»12. Эту задачу интуиция решает с бесконечным терпением и осмотрительностью, попутно накапливая образы и сравнения, дабы «охватить реальность»14, тем самым угадывая все более точно то, что не может быть передано с помощью общих терминов и абстрактных идей.
Наука и интуитивная метафизика, по Бергсону, «являются или могут быть одинаково точными и определенными. Они обе опираются на самую реальность. Но каждая из них охватывает лишь половину реальности, поэтому их, если угодно, можно было бы рассматривать как два раздела науки или две главы метафизики, если бы они не знаменовали собой различные направления мыслительной деятельности»14.
Определение этих двух различных направлений также можно рассматривать как историческое следствие развития науки. Для Бергсона речь идет не об отыскании научных альтернатив физике его времени. По его мнению, химия и биология явно избрали за образец механику. Таким образом, надеждам, которые питал Дидро относительно будущего химии и медицины, не суждено было сбыться. С точки зрения Бергсона, наука представляет собой единое целое и судить о ней нужно как о едином целом. Именно так он и поступает, представляя науку как продукт практического разума, цель которого состоит в том, чтобы установить господство над материей. Развивая абстракцию и обобщение, абстрактный разум тем самым создает интеллектуальные категории, необходимые ему для достижения господства над материей. Наука есть продукт пашей жизненной потребности в использовании мира, и ее понятия определены необходимостью манипулировать объектами, делать предсказания и добиваться воспроизводимости действий. Именно поэтому рациональная механика выражает самое существо науки, является его реальным воплощением. Другие науки выражают подход, тем более успешный, чем более инертную и дезорганизованную область он исследует, не столь определенно и изящно, как рациональная механика, По Бергсону, все ограничения научной рациональности могут быть сведены к одному решающему: неспособности понять длительность, поскольку научная рациональность сводит время к последовательности мгновенных состояний, связанных детерминистическим законом.
«Время - это сотворение нового или вообще ничего»15. Природа - изменение, непрестанное сотворение нового, целостность, создаваемая в открытом по самому своему существу процессе развития без предустановленной модели. «Жизнь развивается и длится во времени»18. Единственная часть этого развития, которую может постигнуть разум, - то, что ему удается фиксировать в виде манипулируемых и вычислимых элементов и в соотнесении со временем, рассматриваемым просто как последовательность отдельных моментов.
Таким образом, физика «ограничена сцеплением одновременностей между событиями, составляющими такое время, и положений подвижного тела Т на его траектории. Она вычленяет эти события из целого, каждый миг принимающего новую форму и придающего им некую новизну. Она рассматривает их абстрактно, как если бы они находились вне живого целого, т. е. во времени, развернутом в пространстве. Она удерживает только события или системы событий, которые могут быть изолированы, не претерпевая при этом слишком глубокой деформации, поскольку только к таким событиям применим ее метод. Наша физика берет начало с того дня, когда стало известно, как изолировать такие системы»17.
Но когда дело доходит до познания самой длительности, наука становится бессильной. Здесь необходима интуиция - «прямое созерцание разума разумом»18. «Чистое изменение, истинная длительность есть нечто духовное. Интуиция есть то, что познает дух, длительность, чистое изменение»19.
Можно ли утверждать, что Бергсон потерпел провал так же, как до него посткаптианская натурфилософия? Бергсон потерпел провал, поскольку основанная на интуиции метафизика, которую он жаждал создать, так и не материализовалась. Бергсон не потерпел неудачи в том, что, в отличие от Гегеля, ему посчастливилось высказать о естествознании суждение, которое в целом было твердо обосновано, а именно: Бергсон утверждал, что классическая наука достигла своего апофеоза, и тем самым выделил (идентифицировал) проблемы, и поныне все еще остающиеся нашими проблемами. Но, как и посткаптианские критики, Бергсон отождествлял науку своего времени со всей наукой. Тем самым он приписывал науке de jure ограничения, которые в действительности были лишь ограничениями de facto. Вследствие этого он пытался раз и навсегда установить status quo для соответствующих областей науки и других разновидностей интеллектуальной деятельности. Единственная перспектива, которая оставалась открытой для него, состояла в том, чтобы каким-то образом указать способ, позволяющий антагонистическим подходам в лучшем случае лишь сосуществовать. И, наконец, последнее. Хотя предложенная Бергсоном сжатая формула основного достижения классической
науки еще в какой-то мере приемлема для нас, мы отнюдь не можем воспринимать ее как формулировку навечно установленных пределов научной деятельности. Мы склонны видеть в ней программу, которую лишь начинают претворять в жизнь происходящие ныне метаморфозы науки. В частности, теперь мы знаем, что время, связанное с движением, не исчерпывает значения времени в физике. Таким образом, те ограничения, против которых была направлена критика Бергсона, начинают преодолеваться не путем отказа от научного подхода или абстрактного мышления, а путем осознания ограниченности понятий классической динамики и открытия новых формулировок, остающихся в силе в более общих ситуациях.
4. Процесс и реальность: Уайтхед
Мы уже отмечали, что элементом, общим для Канта, Гегеля и Бергсона, является поиск подхода к реальности, отличного от подхода классической науки. В этом же видит свою основную цель и заведомо докантианская по своим установкам философия Уайтхеда. В своем наиболее важном труде «Процесс и реальность» Уайтхед вновь возвращает нас к великим философским учениям классического периода и их стремлению к строгому концептуальному экспериментированию.
Уайтхед пытается понять человеческий опыт как процесс, принадлежащий природе, как физическое существование. Столь дерзкий замысел привел Уайтхеда, с одной стороны, к отказу от философской традиции, определявшей субъективный опыт в терминах сознания, мышления и чувственного восприятия, а с другой стороны, к интерпретации всего физического существования в терминах радости, чувства, потребности, аппетита и тоски, т. е. вынудил его скрестить меч с тем, что он называл «научным материализмом», который родился в XVII в. Как и Бергсон, Уайтхед отметил основные уязвимые места теоретической схемы, развитой естествознанием XVII в.:
«Семнадцатый век наконец произвел схему научной мысли, сформулированную математиками для математиков. Замечательной особенностью математического ума является его способность оперировать с абстракциями и извлекать их из четких доказательных цепочек рассуждений, вполне удовлетворительных до тех пор, пока это именно те абстракции, о которых вы хотите думать. Колоссальный успех научных абстракций (дающий, с одной стороны, материю с ее простым положением во времени и в пространстве, а с другой - разум, воспринимающий, страдающий, рассуждающий, но не вмешивающийся) навязал философии задачу принятия абстракций как наиболее конкретного истолкования факта.
Тем самым современная философия была обращена в руины. Она стала совершать сложные колебания между тремя крайними точками зрения: дуалистов, принимающих материю и разум на равных основаниях, и двух разновидностей монистов, из которых одна помещает разум внутрь материи, а другая - материю внутрь разума. Но жонглирование абстракциями, разумеется, бессильно преодолеть внутренний хаос, вызванный приписыванием ошибочно адресуемой конкретности научной схеме XVII в.»20
Однако Уайтхед считал, что ситуация, сложившаяся в философии, носит лишь временный характер. Наука, по его мнению, не обречена оставаться пленницей хаоса и неразберихи.
Мы уже затрагивали вопрос о том, можно ли сформулировать натурфилософию, которая не была бы направлена против естествознания. Одна из наиболее амбициозных попыток в этом направлении - космология Уайтхеда. Уайтхед не усматривал принципиального противоречия между естествознанием и философией. Свою цель он видел в том, чтобы определить концептуальное поле, которое позволило бы последовательно анализировать проблему человеческого опыта и физических процессов и определять условия ее разрешимости. Для этого необходимо было сформулировать принципы, дающие возможность охарактеризовать все формы существования - от камней до человека. По мнению Уайтхеда, именно эта универсальность придает его подходу черты «философии». В то время как каждая научная теория отбирает и абстрагирует от сложностей мира некоторое конкретное множество отношений, философия не может отдавать предпочтение :какой-нибудь одной области человеческого опыта перед другой, Посредством концептуального экспериментирования философия должна стремиться к построению непротиворечивой схемы, включающей в себя все виды измерения опыта независимо от того, принадлежат ли они физике, физиологии, психологии, биологии, этике и т. д.
Уайтхед сознавал (возможно, более остро, чем кто-нибудь другой), что созидательная эволюция природы не могла бы быть познана, если бы составляющие ее элементы были неизменными индивидуальными сущностями, сохраняющими свое тождество при всех изменениях и взаимодействиях. Но столь же отчетливо Уайтхед сознавал, что объявить всякую неизменность иллюзорной, отринуть ставшее во имя становящегося, отвергнуть индивидуальные сущности в пользу непрерывно и вечно изменяющегося потока означало бы снова оказаться в ловушке, всегда подстерегающей философию, - «совершать блестящие подвиги оправдывания»21.
Задачу философии Уайтхед видел в том, чтобы совместить перманентность и изменение, мыслить вещи как процессы, показать, как становящееся, возникающее формирует отдельные сущности, как рождаются и умирают индивидуальные тождества. Подробное изложение системы Уайтхеда выходит за рамки нашей книги. Мы хотели бы лишь подчеркнуть, что Уайтхед убедительно продемонстрировал связь между философией отношения (ни один элемент природы не является перманентной основой изменяющихся отношений, каждый элемент обретает тождество нз своих отношений с другими элементами) и философией инновационного становящегося. В процессе своего генезиса все сущее унифицирует многообразие мира, поскольку добавляет к этому многообразию некоторое дополнительное множество отношений. При сотворении каждой новой сущности «многое обретает единство и растет как единое целое»22.
В конце нашей книги мы еще раз встретимся с поставленной Уайтхедом проблемой перманентности и изменения, на этот раз в физике. Мы расскажем о структурах, возникающих при необратимом взаимодействии с внешним миром. Современная физика открыла, что различия между структурными единицами и отношениями столь же важны, как и взаимозависимости. Для того чтобы взаимодействие было реальным, «природа»
вещей, связанных между собой определенными отношениями, должна, как считает современная физика, проистекать из этих отношений, а сами отношения должны с необходимостью следовать из «природы» вещей (см. гл. 10). Таким образом, Уайтхеда с полным основанием можно считать предтечей «самосогласованных» описаний типа философии «бутстрэпа» в физике элементарных частиц, утверждающей универсальную взаимосвязанность всех частиц, Но в те времена, когда Уайтхед создавал свой труд «Процесс и реальность», ситуация в физике была совершенно иной и философия Уайтхеда нашла отклик лишь в биологии23.
Случай Уайтхеда, как и случай Бергсона, свидетельствует о том, что только раскрывающаяся, расширяющаяся наука способна положить конец расколу между естествознанием и философией. Такое расширение науки возможно только при условии, если мы пересмотрим нашу концепцию времени. Отрицать время, т. е. сводить его к проявлению того или иного обратимого закона, означает отказаться от возможности сформулировать концепцию природы, согласующуюся с гипотезой о том, что природа породила живые существа, и в частности человека. Отрицание времени обрекает нас на бесплодный выбор между антинаучной философией и отчужденным естествознанием.
5. Ignoramus et Ignorabimus - лейтмотив позитивистов
Другой метод преодоления трудностей классической рациональности, присущих классической науке, состоял в отделении того, что было наиболее плодотворным с точки зрения науки, от того, что «истинно». Это еще один аспект кантианского раскола. В своем докладе «О цели естественных наук» (1865 г.) Кирхгоф провозгласил, что высшая цель естествознания состоит в сведении любого явления к движению, в свою очередь движение подлежит описанию средствами теоретической механики. С аналогичным заявлением выступил Гельмгольц, химик, медик, физик и физиолог, бывший властителем дум в германских университетах в те времена, когда они были средоточием европейской науки. Гельмгольц утверждал, что «явления природы необходимо свести к движениям материальных частиц, обладающих неизменными движущими силами, которые зависят лишь от условий пространства»24.
Таким образом, цель естественных паук состояла в том, чтобы свести все наблюдения к законам, сформулированным Ньютоном и обобщенным такими знаменитыми физиками и математиками, как Лагранж, Гамильтон и другие. Вопрос о том, почему движущие силы существуют и входят в уравнение Ньютона, считался незаконным. «Понять» материю (массу) и силы было невозможно, хотя эти понятия использовались при формулировке законов динамики. В ответ на вопрос «почему?» природа сил и масс оставалась скрытой от пас. Дюбуа-Реймон, как мы уже упоминали, весьма точно сформулировал ограничения нашего знания: «Ignoramus et ignorabimus («мы не знаем и не будем знать»). Наука не обеспечивает нам доступ к тайнам природы. Что же такое наука?
Мы уже приводили высказывание весьма влиятельного физика и философа Маха: наука есть составная часть дарвиновской борьбы за существование. По мнению Маха, наука помогает нам организовать наш опыт. Она приводит к экономии мышления. Математические законы - не что иное, как соглашения, позволяющие удобно резюмировать результаты возможных экспериментов. В конце XIX в. научный позитивизм обладал огромной интеллектуальной привлекательностью. Во Франции он оказал влияние на труды таких выдающихся исследователей, как Дюгем и Пуанкаре.
Еще один шаг в преодолении «презренной метафизики» - и мы в Венском кружке. Все положительное знание, по мнению членов этого кружка, находится под юрисдикцией естествознания, а философия необходима для поддержания положительного знания в порядке. Такая точка зрения означала радикальное подчинение естествознанию, науке всего рационального знания и всех рациональных вопросов. Вот как пишет об этом в своей книге «Направление времени» выдающийся философ-неопозитивист Рейхенбах:
«Для решения проблемы времени не существует других способов, кроме методов физики. Физика гораздо более других наук связана с природой времени. Если время объективно, то физик должен установить этот факт; если имеется становление, то физик должен познать его; однако если время лишь субъективно и бытие безвременно, тогда физик должен иметь возможность игнорировать время в своем истолковании реальности н описывать мир без ссылок на время... Исследование природы времени без ссылок на время - безнадежное предприятие. Если имеется решение философской проблемы времени, то оно зафиксировано в уравнениях математической физики.
Работа Рейхенбаха представляет большой интерес для каждого, кто пожелает узнать, о чем может сказать физика по поводу проблемы времени, но это не столько книга по философии природы, сколько рассказ о том, чем проблема времени привлекает к себе внимание и «озадачивает» физиков, но не философов.
Какова же роль философии? Нередко утверждалось, что философия призвана стать наукой о пауке. В этом случае цель философии состояла бы в том, чтобы анализировать методы естественных наук, аксиоматизировать и уточнять используемые ими понятия. Но такая роль превратила бы бывшую «царицу всех наук» в некое подобие их служанки. Разумеется, существует возможность того, что уточнение понятий будет способствовать дальнейшему развитию наук, что понимаемая так философия, хотя и с использованием «чужих» методов - логики, семантики, сможет производить новое знание, сравнимое с знанием, добываемым собственно наукой. Такую надежду питают приверженцы «аналитической философии», занимающей столь видное место в англо-американских кругах. Мы не хотим умалять интерес, который представляют такие попытки. Однако нас сейчас интересуют совершенно другие проблемы. Мы не ставим своей целью прояснить или аксиоматизировать существующее знание, мы стремимся лишь в какой-то степени восполнить некоторые принципиально важные пробелы в этом знании.
6. Новое начало
В первой части пашей книги мы описали, с одной стороны, диалог с природой, который сделала возможным классическая наука, а с другой стороны, ненадежное положение науки в системе культуры в целом. Существует ли вывод из создавшегося довольно затруднительного положения? В этой главе мы обсудили некоторые попытки достижения альтернативных способов познания. Мы рассмотрели также позитивистскую точку зрения, которая отделяет науку от реальности.
На научных собраниях моменты наивысшего возбуждения очень часто наступают, когда ученые принимаются обсуждать вопросы, не имеющие никакого практического значения, не являющиеся жизненно важными, например возможные интерпретации квантовой механики или роль расширяющейся Вселенной в нашей концепции времени. Если бы позитивистская точка зрения, сводящая науку к некоторому исчислению символов, была принята, то наука утратила бы значительную часть своей привлекательности. Распался бы ньютоновский синтез теоретических понятий и активного знания. Мы снова оказались бы в ситуации, известной со времен Древней Греции и Рима: между техническим, практическим знанием, с одной стороны, и теоретическим знанием, с другой, зияла бы непреодолимая пропасть.
Для древних природа была источником мудрости. Средневековая природа говорила о боге. В новые времена природа стала настолько безответной, что Кант счел необходимым полностью разделить науку и мудрость, науку и истину. Этот раскол существует на протяжении двух последних столетий. Настала пора положить ему конец. Что касается науки, то она созрела для этого. Первым шагом к возможному воссоединению знания, как нам сейчас представляется, стало создание в XIX в. теории теплоты, открытие законов, или «начал>, термодинамики. Именно термодинамика претендует на роль хронологически первой «науки о сложности». К этой науке, от ее зарождения до последних достижений, мы сейчас и перейдем.
ЧАСТЬ ВТОРАЯ. НАУКА О СЛОЖНОСТИ
Глава 4 ЭНЕРГИЯ И ИНДУСТРИАЛЬНЫЙ ВЕК
1. Тепло - соперник гравитации
Ignis mutat res*. Это высказывание, известное с незапамятных времен, всегда связывало химию с «наукой об огне». В XVIII в., начиная с концептуальной перестройки, вынудившей науку пересмотреть то, что ранее отвергалось ею во имя механистического мировоззрения, а именно такие понятия, как «необратимость» и «сложность», огонь стал частью экспериментальной науки.
Огонь преобразует материю. Он приводит к химическим реакциям, к таким процессам, как плавление и испарение. Огонь заставляет топливо сгорать и высвобождать тепло. Из всех этих общеизвестных фактов наука XIX в. сосредоточила внимание на одном: горение сопровождается выделением тепла, а подвод тепла может вызывать увеличение объема, в результате чего горение совершает работу. Таким образом, огонь приводит к созданию машины нового типа - тепловой машины, - технологическому новшеству, ставшему основой индустриального общества1.
Интересно отметить, что Адам Смит работал над своим «Исследованием о природе и причинах богатства народов» и собирал данные о перспективах и определяющих факторах роста промышленности в том самом университете, в стенах которого Джеймс Уатт завершал доводку своей паровой машины. Тем не менее Адам Смит смог найти для каменного угля единственно полезное применение - как источник тепла. (В XVIII в. еще не были известны другие источники энергии, кроме воды, ветра, мускульной силы животных и приводимых ими в движение простейших машин.)
Быстрое распространение британской паровой машины вызвало новый интерес к механическому действию теплоты, и термодинамика, детище этого интереса, занималась не столько выяснением природы тепла, сколько скрытыми в тепле возможностями производства «механической энергии».
Что же касается рождения «пауки о сложности», то мы предлагаем датировать его 1811 годом, когда барону Жан-Батисту Жозефу Фурье, префекту Изера, была присуждена премия Французской академии наук за математическую теорию распространения тепла в твердых телах.
Установленный Фурье результат был удивительно прост и изящен: поток тепла пропорционален градиенту температуры. Замечательно, что этот простой закон применим к веществу, в каком бы состоянии оно ни находилось: твердом, жидком или газообразном. Кроме того, закон Фурье выполняется независимо от химического состава тела, будь оно из золота или из железа. Специфическим для каждого вещества является коэффициент пропорциональности между тепловым потоком и градиентом температуры.
Ясно, что универсальный характер закона Фурье не связан непосредственно с динамическими взаимодействиями, описываемыми законом Ньютона, поэтому формулировку закона теплопроводности можно рассматривать как исходную точку науки нового типа. Действительно, простота предложенного Фурье математического описания распространения тепла разительно контрастирует со сложностью вещества, рассматриваемого с точки зрения его молекулярного строения. Твердое тело, газ или жидкость представляют собой макроскопические системы, состоящие из огромного числа молекул, и тем не менее теплопроводность описывается одним-единственным законом. Фурье вывел свой закон в то время, когда в европейской науке школа Лапласа занимала господствующее положение. Лаплас, Лагранж и их ученики пытались объединенными усилиями критиковать теорию Фурье, ио были вынуждены отступить2. Сбывшаяся было мечта Лапласа потерпела первое поражение. Фурье создал физическую теорию, не уступавшую по математической строгости механическим законам движения, но в
то же время остававшуюся совершенно чуждой ньютоновскому миру. С момента появления теории теплопроводности Фурье математика, физика и ньютоновская наука перестали быть синонимами.
Открытие закона теплопроводности имело непреходящее значение. Интересно отметить, что с появлением закона Фурье исторические пути развития физики во Франции и Англии разошлись и к современному этапу французские физики и их английские коллеги следовали различными маршрутами.
Во Франции крушение мечты Лапласа привело к позитивистской классификации науки на иерархически упорядоченные отделы, предложенные Огюстом Контом. Контовская классификация науки была подробно проанализирована Мишелем Серром. В физике сосуществуют две универсалии: тепло и гравитация. Более того, как вынужден признать позднее Конт, эти две универсалии - антагонисты. Гравитация действует на инертную массу, которая подчиняется гравитации, не испытывая ее действия иным путем, кроме как через движение, которое приобретает или передает. Тепло преобразует вещество, определяет изменения состояния и вызывает изменения внутренних свойств. В некотором смысле это было подтверждением протеста химиков-антиньютонианцев и всех тех, кто подчеркивал различие между чисто пространственно-временным поведением, приписываемым -массе, и специфической активностью вещества. Именно такое различие н было принято за основу классификации наук, проведенной Контом по общему признаку - порядку, т. е. равновесию. К механическому равновесию сил позитивистская классификация просто добавила понятие теплового равновесия.
С другой стороны, в Британии с появлением теории распространения тепла отнюдь не прекратились попытки объединения всех областей знания, более того, там наметилось новое направление научных исследований - первые шаги в создании теории необратимых процессов.
Закон Фурье, если его применить к изолированному телу с неоднородным распределением температуры, описывает постепенное установление равновесия. Теплопроводность приводит к все большему выравниванию распределения температуры до тех пор, пока распределение во всем теле не станет однородным. Всякий знает, что выравнивание температуры - процесс необратимый. Еще столетне назад Берхаве подчеркивал, что тепло всегда распространяется и выравнивается. Таким образом, наука о сложных явлениях (основанных на взаимодействии большого числа частиц) и временная асимметрия с самого начала оказались взаимосвязанными. Но теплопроводность стала исходным пунктом исследований природы необратимости не раньше, чем была установлена ее связь с понятием «диссипация», рассматриваемым с инженерной точки зрения4.
Познакомимся несколько подробнее со структурой новой «науки о тепле» в том виде, в каком она сложилась в начале XIX в. Подобно механике, наука о тепле включала в себя и оригинальную концепцию физического объекта, и определение машниы, или двигателя, т. е. отождествление причины и следствия в специфическом способе производства механической работы.
При исследовании физических процессов, связанных с теплом, состояние системы необходимо задавать, указывая не положения и скорости ее составных частей (в объеме газа порядка 1 см3 содержится около 1023 молекул), как в случае динамики, а некоторую совокупность макроскопических параметров, таких, как температура, давление, объем н т. д. Кроме того, необходимо учитывать граничные условия, описывающие отношение системы к окружающей среде.
В качестве примера рассмотрим одно из характерных свойств макроскопической системы - ее удельную теплоемкость. Напомним, что удельной теплоемкостью называется количество тепла, которое необходимо сообщить системе, чтобы поднять ее температуру на один градус при постоянном объеме или давлении. Чтобы исследовать удельную теплоемкость (например, при постоянном объеме), систему необходимо привести во взаимодействие с окружающей средой: система должна получить определенное количество тепла, в то время как объем ее поддерживается постоянным, а температура может изменяться.
В более общем случае систему можно подвергнуть механическому воздействию (например, поддерживать постоянство давления или объема с помощью поршня), тепловому воздействию (подводить к системе или отводить от нее некоторое количество тепла) или химическому воздействию (создавать поток реагирующих веществ
н продуктов реакции между системой и окружающей средой). Как мы уже упоминали, давление, объем, химический состав и температура являются классическими физико-химическими параметрами, через которые выражаются свойства макроскопических систем. Термодинамику можно определить как науку о корреляции между изменениями этих свойств. Следовательно, термодинамические объекты приводят к новой по сравнению с динамическими объектами точке зрения. Цель теории состоит не в предсказании поведения системы в терминах взаимодействия частиц, а в предсказании реакции системы на изменения, вводимые нами извне.
Механическое устройство (машина) возвращает в виде работы потенциальную энергию, полученную им из внешнего мира. Причина и следствие имеют одинаковую природу и, по крайней мере в идеальном случае, эквивалентны. Действие тепловой машины, в отличие от механического устройства, сопряжено с материальными изменениями состояний, включающими преобразование механических свойств системы, расширением и увеличением объема. Производимую тепловым двигателем работу следует рассматривать как результат подлинного процесса преобразования, а не только передачи движения. Таким образом, тепловая машина - не пассивное устройство. Строго говоря, она производит движение. С этой особенностью тепловой машины связана новая проблема: чтобы восстановив способность системы производить движение, ее необходимо возвратить в начальное состояние. Следовательно, необходим второй процесс, второе изменение состояния, которое компенсировало бы то изменение, которое производит движение. В тепловой машине таким вторым процессом, противоположным первому, является охлаждение системы до начальных значений температуры, давления и объема.
Понятие необратимого процесса было введено в физику в связи с проблемой повышения коэффициента полезного действия (кпд) тепловых машин, т. е. отношения между производимой работой и теплом, которое необходимо подвести к системе, чтобы осуществить два взаимно компенсирующих процесса. Мы еще вернемся к вопросу о значении закона Фурье для этой проблемы, но сначала опишем ту существенную роль, которую играет закон сохранения энергии.
2. Принцип сохранения энергии
Мы уже отмечали, что в классической динамике энергия занимает центральное место. Гамильтониан (сумму кинетической и потенциальной энергий) можно представить в канонических переменных - координатах и импульсах. В процессе движения значения канонических переменных изменяются, значение же гамильтониана остается постоянным. Динамическое изменение лишь перераспределяет относительную значимость потенциальной н кинетической энергий, оставляя неизменной их сумму.
Начало XIX в. совпало с бурным периодом в истории экспериментальной физики5. Нескончаемая вереница открытий показала физикам, что движение способно порождать не только изменения в относительных положениях тел в пространстве. Новые процессы, открытые в лабораториях, постепенно создали сеть, связавшую воедино все новые области физики с другими более традиционными областями, например с механикой. Одну из таких связей неожиданно обнаружил Гальвани. До него были известны только статические электрические заряды. Производя опыты с препаратами лапок лягушек, Гальвани впервые экспериментально наблюдал действие электрического тока. А. Вольта вскоре понял, что «гальванические» сокращения лапок лягушки вызывает проходящий через них электрический ток В 1800 г. Вольта построил химическую батарею: стало возможным получать электричество с помощью химических реакций. Затем был открыт электролиз: электрический ток позволял изменять химическое сродство и проводить химические реакции. Но электрический ток давал также свет и тепло, а в 1820 г. Эрстед обнаружил, что электрический ток оказывает действие и на магнитную стрелку. В 1822 г. Зеебек показал, что тепло может быть источником электричества, а в 1834 г. им был открыт способ охлаждения вещества с помощью электричества. В 1831 г. Фарадей индуцировал электрический ток с помощью магнитных эффектов. Так постепенно была открыта целая совокупность новых физических эффектов. Естественнонаучный горизонт расширялся с неслыханной быстротой.
Решающий шаг был сделан в 1847 г. Джоулем: он понял, что связи, обнаруженные между выделением или поглощением тепла, электричеством и магнетизмом, протеканием химических реакций, а также биологическими
объектами, носят характер «превращения», идея превращения, опирающаяся на постулат о количественном сохранении «чего-то» при его качественных изменениях, обобщает то, что происходит при механическом движении. Как мы уже знаем, полная энергия сохраняется, в то время как потенциальная энергия переходит, превращается в кинетическую, и наоборот. Джоуль определил общий эквивалент для физико-химических трансформаций, что позволило измерить сохраняющуюся величину. Впоследствии6 эта величина стала известна как «энергия». Джоуль установил первую эквивалентность, измерив механическую работу, которую необходимо затратить, чтобы поднять температуру данного количества воды на один градус. Так среди ошеломляющего потока новых разнообразных открытий был обнаружен унифицирующий элемент. Сохранение энергии при самых различных преобразованиях, претерпеваемых физическими, химическими и биологическими системами, стало путеводным принципом в исследовании новых процессов.
Неудивительно, что закон сохранения энергии был столь важен для физиков XIX в. Для многих из них он был воплощением единства природы. Это убеждение отчетливо звучит в высказывании Джоуля, выдержанном в традициях английской науки:
«Явления природы, механические, химические или биологические, состоят почти полностью из непрерывного превращения тяготения на расстоянии живой силы [кинетической энергии] в тепло, и наоборот. Тем самым поддедживается порядок во Вселенной: ничто не расстрачивается, ничто не утрачивается, а весь механизм при всей своей сложности работает слаженно и гармонично. И хотя, как в ужасном видении пророка Иезекииля, «казалось, будто колесо находилось в колесе» (Иезек, 1, 16) и все кажется сложным и вовлеченным в хитросплетения почти неисчерпаемого многообразия причин, следствий, превращений и выстраивания в определенной последовательности, тем не менее сохраняется идеальнейший порядок и все бытие послушно непререкаемой воле бога»7.
Еще более показателен случай немецких ученых Гельмгольца, Майера и Либиха. Все трое принадлежали к культурной традиции, которая отвергла бы взгляды Джоуля с позиций чисто позитивистской практики. В ту пору, когда они совершали свои открытия, ни один из
Них не был, строго говоря, физиком. Однако их всех Интересовала физиология дыхания. Со времен Лавуазье это был своего рода эталон проблемы, в которой функционирование живого существа поддавалось описанию в точных физических и химических терминах, таких, как расход кислорода при горении, выделение тепла и мускульная работа. Эта проблема привлекала физиологов и химиков, чуждых чисто умозрительным построениям романтиков н жаждущих внести свой вклад в экспериментальную науку. Обстоятельства, при которых эти трое ученых пришли к заключению, что дыхание, да и природа в целом подчиняются универсальной «эквивалентности», лежащей в основе всех, больших и малых, явлений, позволяют утверждать, что именно немецкой философской традиции открыватели закона сохранения энергии обязаны своей концепцией, совершенно чуждой позитивисткой позиции: все трое без малейших колебаний пришли к выводу о всеобщем характере закона сохранения энергии, о том, что он пронизывает всю природу до мельчайших кирпичиков мироздания.
Особенно замечательным нам представляется случай Майера8. Работая в молодые годы врачом в голландских колониях на Яве, Майер обратил внимание на ярко красный цвет венозной крови у одного из своих пациентов. Это наблюдение привело его к заключению, что жителям жаркого тропического климата требуется меньше кислорода для поддержания нормальной температуры тела, чем в средних широтах, чем и объясняется яркий цвет их крови. Майер продолжил свои исследования и установил баланс между потреблением кислорода, являющимся источником энергии, и потреблением энергии, затрачиваемой на поддержание постоянной температуры тела, несмотря на тепловые потери и мышечную работу. Это была счастливая догадка, так как причиной яркого цвета крови пациента вполне могла быть, например, его «лень». Но Майер не остановился на достигнутом и, продолжив свои рассуждения, пришел к заключению, что баланс потребления кислорода и тепловых потерь - не более чем частное проявление существования какой-то неразрушимой «силы», лежащей в основе всех явлений.
Тенденция видеть в явлениях природы продукты лежащей в их основе реальности, сохраняющей постоянство при всех трансформациях, поразительно напоминает идеи Канта. Влияние Канта отчетливо ощущается и в другой идее, которую разделяли некоторые физиологи: в необходимости различать витализм как философскую спекуляцию и витализм как проблему научной методологии. Для тех физиологов, кто придерживался этой точки зрения, даже если бы существовала «жизненная» сила, лежащая в основе функционирования живых организмов, объект физиологии по своей природе оставался бы чисто физико-химическим. По двум названным выше причинам кантианство, узаконившее ту систематическую форму, которую приняла математическая физика в XVIII в., по праву может считаться одним из источников обновления физики в XIX в.
Гельмгольц совершенно открыто признавал влияние Каита. Для Гельмгольца закон сохранения энергии был лишь воплощением в физике общего априорного требо вапия, на котором зиждется вся наука, а именно постулата о фундаментальной инвариантности, которая кроется за всеми трансформациями, происходящими в природе:
«Цель указанных* наук заключается в отыскании законов, благодаря которым отдельные процессы в природе могут быть сведены к общим правилам и могут быть снова выведены из этих последних. Эти правила, к которым относятся, например, законы преломления или отражения света, закон Мариотта и Гей-Люссака для объема газов, являются, очевидно, не чем иным, как общим видовым понятием, которым охватываются все относящиеся сюда явления. Разыскание подобных законов является делом экспериментальной части наших наук; теоретическая часть старается в то же время опре делить неизвестные причины явлений из их видимых действий; она стремится понять их из закона причинности.
Мы вынуждены были так поступать и имеем на это право благодаря основному закону, по которому всякое изменение в природе должно иметь достаточное основание. Ближайшие причины, которым мы подчиняем естественные явления, могут быть в свою очередь неизменными или изменяющимися. В последнем случае тот же закон принуждает нас искать другие причины этого изменения и так далее до тех пор, пока мы не доходим до последних причин, которые действуют по
неизменному закону и которые, следовательно, В каждое время при одинаковых условиях вызывают одно и то же действие. Конечной целью теоретического естествознания и является, таким образом, разыскание последних неизменных причин явлений в природе»10.
С появлением закона сохранения энергии начала формироваться идея о новом золотом веке физики, который должен был бы в конечном счете привести к наиболее широкому обобщению механики.
Открытие закона сохранения энергии имело далеко идущие культурные последствия. В их число входило и представление об обществе и человеке как о машинах, преобразующих энергию. Но превращение энергии не может быть конечным звеном цепи. Оно отражает пассивные и управляемые аспекты природы, но за ними должен находиться еще один более «активный» уровень. Ницше был одним из тех, кто уловил эхо актов творения и разрушения, выходящих за рамки одного лишь сохранения или превращения. Результаты, являющиеся различиями, могут порождать только различие, например разность температур или уровней потенциальной энергии11. Превращение энергии есть всего лишь уничтожение одного различия с одновременным созданием другого. Сила природы оказывается, таким образом, скрытой использованием эквивалентностей. Но существует другой аспект природы, имеющий непосредственное отношение к котлам паровых двигателей, химическим превращениям, жизни и смерти и выходящий за рамки эквивалентностей и сохранения энергии. Говоря об этом аспекте, мы подходим к самому важному вкладу термодинамики в естествознание - понятие необратимости.
3. Тепловые машины и стрела времени
Сравнивая механические устройства с тепловыми машинами, например с паровозными котлами с их раскаленными докрасна топками, мы наглядно видим брешь, отделяющую классический век от технологии XIX в. Тем не менее физики поначалу думали, что эту брешь можно игнорировать, что тепловые машины удастся описывать так же, как некогда механические, пренебрегая тем решающим фактом, что использованное тепловой машиной горючее исчезает навсегда. Но вскоре подобному благодушию пришел конец. Для классической механики символом природы были часы, для индустриального века таким символом стал резервуар энергии, запас которого всегда грозил иссякнуть. Мир горит как огромная печь; энергия, хотя она и сохраняется, непрерывно рассеивается.
Первоначальную формулировку второго начала термодинамики, которая позволила впервые количественно выразить необратимость, предложил в 1824 г. Сади Карно - до того, как Майер (1842) и Гельмгольц (1847) сформулировали в общем виде закон сохранения энергии. Карно, продолжая работу своего отца Лазара Карно, автора весьма авторитетного трактата по теории машин (механических устройств), занимался анализом работы тепловой машины.
При описании механических устройств движение предполагается заданным. На современном языке это соответствует сохранению энергии и импульса. Движение лишь претерпевает превращения и передается другим телам. Но аналогия между механическим устройством и тепловой машиной была естественной для Сади Карио, поскольку он, как и большинство ученых его времени, предполагал, что тепло сохраняется подобно тому, как сохраняется механическая энергия.
Вода, падающая с одного уровня на другой, способна приводить в движение мельничное колесо. Аналогичным образом Сади Карно предположил, что существуют два источника, один из которых отдает тепло системе двигателя, а второй, находящийся при другой температуре, поглощает тепло, отданное первым. Таким образом, работу тепловой машины Сади Карно представил как движение тепла через машину между двумя источниками, находящимися при различных температурах. Иначе говоря, работу, производимую машиной, по Карно, совершает движущая сила огня.
Сади Карио поставил перед собой те же вопросы, какие задавал его отец13. У какой машины коэффициент полезного действия будет наиболее высоким? Каковы источиики потерь? При каких процессах тепло распространяется, не производя работы? Лазар Карио пришел к заключению, что для достижения наивысшего коэффициента полезного действия при постройке и эксплуатации механического устройства следует сводить до минимума удары, трение и резкие, скачкообразные изменения скорости, т. е., короче говоря, все, что происходит при внезапном соприкосновении тел, движущихся с различными скоростями. Рассуждая так, Лазар Карно лишь следовал физике своего времени, считавшей, что только непрерывные изменения консервативны, а все скачкообразные изменения движения сопряжены с необратимой потерей «живой силы». Заключение Сади Карно было аналогичным: идеальная тепловая машина вместо того, чтобы избегать любых контактов между телами, движущимися с различными скоростями, должна избегать любых контактов между телами, имеющими различные температуры.
Следовательно, рассуждал Сади Карно, цикл необходимо строить так, чтобы ни одно изменение температуры не было обусловлено прямым потоком тепла между двумя телами, находящимися при различных температурах. Поскольку такие потоки не производили бы никакой механической работы, они приводили бы только к снижению кпд.
Идеальный цикл Карио представляет собой, таким образом, весьма хитроумное приспособление, позволяющее достигать парадоксального результата: переноса тепла между двумя источниками, находящимися при различных температурах, без прямого контакта между телами с различной температурой. Цикл Карно подразделяется на четыре стадии. На каждой из двух изотермических стадий система находится в контакте с одним из двух тепловых источников, а ее температура поддерживается равной температуре этого источника. Находясь в контакте с горячим источником (нагревателем), система поглощает тепло и расширяется. Находясь в контакте с холодным источником (холодильником), система теряет тепло и сжимается. Две изотермические стадии связаны между собой двумя стадиями, на которых система изолирована от источников, т. е. тепло не поступает в систему и не покидает ее, но температура системы изменяется в результате соответственно расширения и сжатия. Объем продолжает изменяться до тех пор, пока система не перейдет от температуры одного источника к температуре другого.
Весьма замечательно, что в приведенном выше описании идеальной тепловой машины ни разу не упоминаются лежащие в основе его реализации необратимые процессы. Ни слова не говорится о печи, в которой сгорает уголь. Предложенная Сади Карно модель отражает лишь конечный результат горения: возможность поддержания разности температур между двумя источниками.
В 1850 г. Клаузиус дал новое описание цикла Карно- с точки зрения закона сохранения энергии. Он обнаружил, что необходимость в двух тепловых источниках (нагревателе и холодильнике) и выведенная Карно формула для теоретического кпд отражают проблему, специфическую для тепловых машин: необходимость процесса, компенсирующего превращение (в случае цикла Карно - охлаждение в контакте с источником, находящимся при более низкой температуре), для того чтобы вернуть машину к начальным механическим и тепловым условиям. Соотношения баланса, выражающие превращения энергии, оказались теперь объединенными новыми отношениями эквивалентности между воздействиями двух процессов - потока тепла между источниками и превращения тепла в работу - на состояние системы. Новая наука - термодинамика, - установившая связь между механическими и тепловыми эффектами, обрела существование.
Работа Клаузиуса наглядно показала, что мы не можем неограниченно использовать, казалось бы, неограниченный резервуар энергии, который предоставляет нам природа. Не все процессы, при которых энергия сохраняется, возможны. Например, невозможно создать разность энергий, не уничтожив при этом по крайней мере ее эквивалентность. В идеальном цикле Карно тепло, переносимое от одного источника к другому, есть та цена, которую приходится платить за производимую работу. Осуществив цикл Карио, мы получаем, с одной стороны, произведенную механическую работу, а с другой стороны, перенос тепла, причем то и другое связано между собой отношением эквивалентности. Эта эквивалентность действует в обоих отношениях. Обратным ходом та же машина может восстановить начальную разность температур, затратив произведенную работу. Невозможно построить тепловую машину только с одним источником тепла.
Клаузиуса так же, как и Карно, не интересовали потери, за счет которых кпд всех реальных тепловых машин ниже предсказываемого теорией идеального значения. Теория Клаузиуса так же, как и теория Карно, отвечает некоторой идеализации. Она указывает лишь предел, который устанавливает природа для эффективности тепловых машин.
Но с XVIII в. статус идеализации изменился. Опираясь на закон сохранения энергии, новое естествознание стало претендовать на описание не только идеализацнй, но и самой природы, включая «потери». Возникла новая проблема, и в физику вошла необратимость. Как описать то, что происходит в реальной машине? Как включить в баланс энергии потери? Насколько снижают потери кпд реальной машины? Ответы на все эти вопросы проложили путь ко второму началу термодинамики.
4. От технологии к космологии
Как мы уже знаем, вопрос, поднятый Карно и Клаузиусом, привел к теории идеальных тепловых машин, основанной на сохранении энергии и компенсации. Кроме того, стало возможным ставить (и решать) новые проблемы, такие, как диссипация энергии. Уильям Томсон, питавший глубочайшее уважение к работе Фурье, быстро осознал важность этой проблемы и в 1852 г. первым сформулировал второе начало термодинамики.
На теплопроводность, математическую теорию которой построил Фурье, Карно указал как на возможную причину энергетических потерь в тепловом двигателе. Так цикл Карио, уже более не идеальный, а «реальный», стал точкой конвергенции двух универсалий, открытых в XIX в.: превращения энергии и теплопроводности. Сочетание этих двух открытий привело Томсона к формулировке его нового принципа: существования в природе универсальной тенденции к деградации механической энергии. Обращаем особое внимание на слово «универсальная», перекликающееся со словом «универсум», т. е. весь мир, или Вселенная.
Мир Лапласа был идеальным вечным двигателем. Начиная с Томсоиа, космология перестает быть только отражением нового идеального теплового двигателя, но и включает последствия необратимого распространения тепла в мире, в котором энергия сохраняется. Этот мир космология Томсона описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации. Соответственно уменьшились различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия - «тепловой смерти». В соответствии с законом Фурье при достижении миром конечного состояния исчезнут всякие различия в температуре, способные производить механический эффект.
Томсон совершил головокружительный прыжок от технологии тепловой машины к космологии. В своей формулировке второго начала термодинамики он использовал научную терминологию середины XIX в.: «сохранение энергии», «тепловой двигатель», «закон Фурье». Немаловажную роль сыграла и культурная среда, в которой было совершено открытие. Общепризнано, что в XIX в. проблема времени приобрела новое значение. Существенную роль времени начали отмечать во всех областях: в геологии, биологии, языкознании, социологии и этике. Вместе с тем интересно отметить, что та специфическая форма, в которой время вошло в физику, именно как тенденция к однородности и смерти, в большей мере напоминает о древних мифологических и религиозных архетипах, чем о все нарастающем усложнении и многообразии, описываемыми биологией и социальными науками. Возвращение этих древних тем можно рассматривать как культурный отзвук социальных и экономических сдвигов времени. Быстрая трансформация технологического способа взаимодействия с природой, постоянно нарастающий темп изменения, с которым столкнулся XIX век, не могли не вызвать тревогу. Это беспокойство не оставляет и нас и принимает самые различные формы в виде повторяющихся призывов к «нулевому росту» общества или к мораторию на научные исследования до провозглашения «научных истин» относительно нашего распадающегося мира. Современные знания в области астрофизики все еще остаются скудными и во многом проблематичными. Трудность продвижения в этой области физики отчасти обусловлена тем, что в астрофизике гравитационные эффекты играют существенную роль и проблемы требуют одновременного использования термодинамики и теории относительности. Тем не менее большинство работ в этой области с удивительным единодушием предсказывает грядущую катастрофу... Одна из последних книг на эту тему рисует такую картину:
«Неприятная истина состоит, по-видимому, в том, что неумолимый распад нашей Вселенной, насколько мы можем судить, неизбежен; организация, охватывающая всякую упорядоченную деятельность от людей до галактик, медленно, но неизбежно деградирует и может даже кануть в небытие в результате всеобщего гравитационного коллапса»14.
Другие более оптимистичны. В превосходной научно-популярной статье об энергии Вселенной Фримен Дайсон пишет следующее:
«Вполне возможно, однако, что жизнь играет более важную роль, чем принято думать. Возможно, что жизни суждено выстоять против всех невзгод, преобразуя мир для собственных целей. И структура неодушевленного мира может оказаться не столь уж далекой от потенциальнстей жизни и разума, как имеют обыкновение полагать ученые XX в.»15
Несмотря на существенный прогресс, достигнутый Хокингом и другими исследователями*, паше знание крупномасштабных преобразований во Вселенной все еще остается неадекватным.
5. Рождение энтропии
В 1865 г. настал черед совершить скачок от технологии к космологии для Клаузиуса. Сначала он лишь переформулировал свои более ранние выводы, но при этом ввел новое понятие - энтропия. Первоначально Клаузиус намеревался четко разграничить понятия сохранения и обратимости. В отличие от механических превращений, для которых обратимость и сохранение совпадают, при физико-химическом превращении энергия может сохраняться даже в том случае, если преобразование необратимо. Это, в частности, относится к трению, когда движение превращается в тепло, или к теплопроводности, описанной Фурье.
Мы уже знакомы с таким понятием, как «энергия». Она является функцией состояния системы, т. е. функцией, зависящей только от значений параметров (давления, объема, температуры), которые однозначно определяют состояние16. Но нам необходимо выйти за рамки Закона сохранения энергии и иайти способ, позволяющий выразить различие между «полезными» обменами энергией в цикле Карио и «диссипированной» энергией, теряемой необратимо.
Именно такую возможность и предоставляет введенная Клаузиусом новая функция, получившая название «энтропия» и обычно обозначаемая буквой 5.
Клаузиус, по-видимому, намеревался лишь записать в новом виде очевидное требование, состоящее в том, что в конце цикла тепловая машина должна возвращаться в начальное состояние. В первом определении энтропии основной акцеит делался на сохранении: в конце каждого цикла, идеального или с потерями, функция состояния системы - энтропия - возвращается к своему начальному значению. Но параллель между энтропией и энергией заканчивается, стоит лишь нам отказаться от принятых идеализации17.
Рассмотрим приращение энтропии dS за короткий интервал времени dt. В случае идеальной и реальной тепловой машины ситуация совершенно различная. В первом случае dS можно полностью выразить через теплообмен между машиной и окружающей средой. Можио поставить специальные опыты, в которых система будет отдавать тепло вместо того, чтобы поглощать его. Соответствующее приращение энтропии при этом лишь изменит знак. Такую составляющую полного приращения энтропии мы обозначим deS. Она обратима в том смысле, что может быть и положительной, и отрицательной. В реальных машинах мы сталкиваемся с совершенно иной ситуацией. В них, помимо обратимого теплообмена, происходят необратимые процессы: тепловые потери, трение и т. д. Они приводят к увеличению энтропии, или производству энтропии, внутри системы. Увеличение энтропии, которое мы обозначим d,S, не может изменять знак при обращении теплообмена с внешним миром. Как все необратимые процессы (например, теплопроводность), производство энтропии всегда происходит в одном и том же направлении. Иначе говоря, величина dtS может быть только положительной или обращаться в нуль в отсутствие необратимых процессов. Заметим, что положительность d,S - вопрос соглашения: с тем же успехом мы могли бы считать величину diS отрицательной. Важно другое: изменение
энтропии монотонно; производство энтропии не может изменять знак во времени.
Выбор обозначений deS и d,S призван напоминать читателю, что первый члеи относится к обмену энергией (по-английски exchange - е) с внешним миром, а второй - к необратимым процессам внутри (по английски inside - i) системы. Таким образом, полное приращение энтропии dS представимо в виде суммы двух членов deS и rf,S, имеющих различный физический смысл18.
Чтобы понять одну специфическую особенность такого разложения приращения энтропии в сумму двух членов, полезно применить наши рассуждения к энергии. Обозначим энергию через £, и пусть dE-приращение энергии за короткий интервал времени dt. Разумеется, ничто не мешает нам представить dE в виде суммы члена deE, описывающего обмен энергией с внешним миром, и члена d,E, связанного с «внутренним производством» энергии. Но закон сохранения энергии утверждает, что энергия никогда не «производится», а лишь переносится с одного места на другое. Следовательно, полное приращение энергии dE сводится к deE. С другой стороны, если мы возьмем какую-нибудь несохраняющуюся величину, например количество молекул водорода в некотором сосуде, то такая величина может изменяться и в результате добавления водорода в сосуд, и вследствие химических реакций, протекающих в сосуде. Знак «производства» несохраняющейся величины заранее не определен. В зависимости от обстоятельств мы можем и производить молекулы водорода, и разрушать их, «отдавая» атомы водорода другим химическим соединениям. Специфическая особенность второго начала состоит в том, что член d,S, описывающий производство энтропии, всегда положителен. Производство энтропии отражает необратимые изменения, происходящие внутри системы.
Клаузиусу удалось найти количествеииое выражение для потока энтропии deS через тепло, поглощаемое (или отдаваемое) системой. В мире, где безраздельно господствуют понятия обратимости и сохранения, вывод такой зависимости имел первостепенное значение. Что же касается необратимых процессов, участвующих в производстве энтропии, то Клаузиус смог установить лишь неравенство d,S/dt>0. Но и оно было важным шагом вперед, поскольку позволяло проводить различие между
потоком энтропии и производством энтропии не только для цикла Карно, но и для других термодинамических систем. Для изолированной системы, которая ничем не обменивается с окружающей средой, поток энтропии, по определению, равен нулю. Остается лишь член, описывающий производство энтропии, а энтропия системы может только возрастать или оставаться постоянной. В этом случае сам собой отпадает вопрос о необратимых изменениях, рассматриваемых как приближение к обратимым изменениям: возрастающая энтропия соответствует самопроизвольной эволюции системы. Энтропия становится, таким образом, «показателем эволюции:», или, по меткому выражению Эддингтона, «стрелой времеии>. Для изолированных систем будущее всегда расположено в направлении возрастания энтропии.
Какая система может быть изолирована лучше, чем наша Вселенная? Эта идея легла в основу космологической формулировки первого и второго начал термодинамики, предложенной Клаузиусом в 1865 г.:
Die Energie der Welt ist konstant
Die Entropie der Welt strebt einem Maximum zu18*.
Утверждение о том, что энтропия изолированной системы возрастает до максимального значения, выходит за рамки той технологической проблемы, решение которой привело к созданию термодинамики. Возрастающая энтропия перестает быть синонимом потерь. Теперь она относится к естественным процессам внутри системы. Под влиянием этих процессов система переходит в термодинамическое «равновесие:», соответствующее состоянию с максимумом энтропии.
В главе 1 мы отмечали элемент некоторой неожиданности в открытии Ньютоном универсальных законов динамики. Когда Сади Карно сформулировал свои законы для идеальных тепловых машин, он не мог даже вообразить, что его работа приведет к концептуальной революции в физике.
Обратимые преобразования принадлежат классической науке в том смысле, что определяют возможность воздействия на систему, управления системой. Динамическим объектом можно управлять, варьируя начальные условия. Аналогичным образом термодинамическим
объектом, определяемым в терминах обратимых преобразований, можно управлять, изменяя граничные условия: любая система, находящаяся в состоянии термодинамического равновесия, при постепенном изменении температуры, объема или давления проходит через серию равновесных состояний и при любом обращении производимых над ней манипуляций возвращается в начальное состояние. Обратимый характер таких изменений и управление объектом через граничные условия - процессы взаимозависимые. С этой точки зрения необратимость «отрицательна»: она проявляется в форме неуправляемых изменений, происходящих в тех случаях, когда система выходит из-под контроля. Наоборот, необратимые процессы можно рассматривать как последние остатки самопроизвольной внутренней активности, проявляемой природой, когда человек с помощью экспериментальных устройств пытается обуздать ее.
Таким образом, «отрицательное» свойство - диссипация- показывает, что в отличие от динамических объектов термодинамические объекты управляемы не до конца. Иногда они «выходят из повиновения», претерпевая самопроизвольное изменение.
Для термодинамической системы все изменения не эквивалентны. В этом и состоит физический смысл разложения dS = deS + d,S. Самопроизвольное изменение d,S, направленное к равновесию, отличается от изменения deS, определяемого и управляемого варьированием граничных условий (например, температуры окружающей среды). В случае изолированной системы равновесие выступает в роли притягивающего множества, или «аттрактора», неравновесных состояний. Следовательно, наше первоначальное утверждение допускает обобщение: эволюция к состоянию-аттрактору отличается от всех других изменений, в особенности от изменений, обусловленных варьированием граничных условий.
Макс Планк часто подчеркивал различие между двумя типами изменений, встречающихся в природе. Природа, писал Планк, по-видимому, отдает «предпочтение» определенным состояниям. Необратимое увеличение энтропии d,S/dt описывает приближение системы к состоянию, неодолимо «притягивающему» ее, предпочитаемому ей перед другими, - состоянию, из которого система не выйдет по «доброй воле».
«Согласно этому способу выражения, в природе невозможны те процессы, при которых природа дает меньшее предпочтение конечному состоянию, чем начальному. Предельный случай представляет обратимые процессы; в них природа испытывает одинаковое предпочтение как к начальному, так и к конечному состоянию, и поэтому переход из одного состояния в другое может происходить в обоих направлениях»20.
Сколь чуждым выглядит такой язык по сравнению с языком динамики! В динамике система изменяется вдоль заданной раз и навсегда траектории, не забывая начальную точку (так как начальные условия определяют всю траекторию при любых значениях времени). В случае же изолированной системы все неравновесные ситуации порождают эволюцию к равновесному состоянию одного и того же типа. К моменту достижения равновесия система забывает свои начальные условия, т. е. способ, которым она была приготовлена.
Удельная теплоемкость или сжимаемость системы, находящейся в состоянии термодинамического равновесия, являются свойствами, не зависящими от того, как была построена система. Это счастливое обстоятельство значительно упрощает исследование физических состояний вещества. Действительно, сложные системы состоят из огромного числа частиц*. С точки зрения динамики воспроизвести любое состояние такой системы невозможно из-за бесконечного разнообразия состояний, в которых она может находиться.
Мы сталкиваемся, таким образом, с двумя принципиально различными описаниями: динамикой, применимой к миру движения, и термодинамикой, наукой о сложных системах, наделенных внутренней способностью эволюционировать в сторону увеличения энтропии. Столь резкая противоположность двух описаний немедленно порождает вопрос о том, какая взаимосвязь существует между ними. Эта проблема дискутируется в науке с тех пор, как были сформулированы начала термодинамики.
6. Принцип порядка Больцмана
Второе начало термодинамики содержит два принципиально важных элемента: 1) «негативный:», выражающий запрет на некоторые процессы, т. е. их невозможность (тепло может распространяться от горячего источника к холодному, но не от холодильника к нагревателю); 2) «положительный», конструктивный. Второй элемент является следствием первого: запрет на некоторые процессы позволяет нам ввести функцию (энтропию), монотонно возрастающую для изолированных систем. Энтропия ведет себя как аттрактор для изолированных систем.
Каким образом положения термодинамики можно было бы совместить с динамикой? В конце XIX в. большинство ученых, по всей видимости, склонны были думать, что термодинамика несовместима с динамикой. Принципы термодинамики были новыми законами, закладывающими фундамент новой науки, не сводимой к традиционной физике. Качественное многообразие энергии и присущую ей тенденцию к диссипации приходилось принимать как новые аксиомы. Таким был аргумент, выдвигаемый «энергетистами» в противовес «атомистам», упорно не желавшим отказаться от выполнения программы, в которой они усматривали высшую миссию физики - сведение сложности явлений природы к простоте поведения элементарных структурных единиц, выражаемого законами движения.
Проблемы перехода от микроскопического уровня к макроскопическому оказались необычайно плодотворными для физики в целом. Первым вызов принял Больцман. Тонкая физическая интуиция подсказывала ему, что необходимо выработать какие-то новые понятия, которые позволили бы обобщить физику траекторий, распространив ее на системы, описываемые термодинамикой. Следуя по стопам Максвелла, Больцман принялся искать концептуальные новации в теории вероятности. В самой идее о том, что вероятность могла бы играть определенную роль в описании сложных явлений, ничего удивительного не было: у Максвелла она, по-видимому, зародилась под влиянием трудов Кетле, который первым ввел в социологию понятие «среднего» человека. Новацией было введение вероятности в физику не как средства аппроксимации, а как объясняющего принципа, использование ее для демонстрации нового типа поведения систем, состоящих из огромного числа частиц: наличие большой популяции позволяло применять правила теории вероятностей.
Рассмотрим один простой пример применения понятия вероятности в физике. Предположим, что ансамбль из N частиц находится в ящике, разделенном на Два равных отделения. Требуется найти вероятность различных распределений частиц между отделениями, т. е. найти вероятность обнаружить Ni частиц в первом отделении (и N2 = N-N1 частиц во втором).
Комбинаторный анализ позволяет легко сосчитать число способов, которыми получается каждое из различных распределений N частиц. Например, при N = 8 поместить восемь частиц в одну половину ящика можно лишь одним способом. Но если предположить, как это делается в классической физике, что все частицы различимы, то поместить одну частицу в одном отделении, а остальные семь - в другом отделении ящика можно восемью различными способами. Распределить восемь частиц поровну между двумя половинами ящика можно 8!/4!4!=70 различными способами (где nl = l-2-3..o (п-1)п). Аналогичным образом при любом N можно указать число Р способов, которыми можно получить любое заданное распределение (Nu N2), или, как принято говорить в физике, комплексов. Оно определяется выражением P=N/NN2.
Чем больше число комплексов в любом ансамбле частиц, тем меньше отличаются между собой числа /V, и N2. Число комплексов максимально, когда частицы поровну распределены между двумя отделениями ящика. Кроме того, чем больше N, тем больше отличаются между собой числа комплексов, соответствующие различным распределениям. При значениях N порядка 10", достижимых в макроскопических системах, подавляющее большинство распределений соответствует случаю Ni = N2 = N/2. Следовательно, для систем, состоящих из большого числа частиц, все состояния, отличающиеся от состояния, которое соответствует равномерному распределению, маловероятны.
Больцман первым понял, что необратимое возрастание энтропии можно было бы рассматривать как проявление все увеличивающегося молекулярного хаоса, постепенного забывания любой начальной ^симметрии, поскольку асимметрия приводит к уменьшению числа комплексов по сравнению с состоянием, отвечающим максимальному значению Р. Придя к такому выводу, Больцман решил отождествить энтропию S с числом комплексов: каждое макроскопическое состояние энтропия характеризует числом способов, которым оно может быть достигнуто. Знаменитое соотношение Больцмаиа S=klnP* выражает ту же идею количественно. Коэффициент пропорциональности к в этой форме - универсальная постоянная, известная под названием «постоянная Больцмана».
Результаты Больцмана означают, что необратимое термодинамическое изменение есть изменение в сторону более вероятных состояний и что состояние-аттрактор есть макроскопическое состояние, соответствующее максимуму вероятности. Такие выводы уводят нас далеко за пределы физики Ньютона. Впервые интерпретация физического понятия была дана в терминах вероятности. Полезность больцмановской интерпретации непосредственно очевидна. Вероятность позволяет адекватно объяснить, почему система забывает любую начальную асимметрию, детали любого конкретного распределения (например, какие частицы были первоначально сосредоточены в данной подобласти системы, или распределение скоростей, возникшее при смешении двух газов с различными температурами). Забывание начальных условий возможно потому, что, как бы ни эволюционировала система, она в конечном счете перейдет в одно из микроскопических состояний, соответствующих макроскопическому состоянию хаоса и максимальной симметрии, поскольку именно такие макроскопические состояния составляют подавляющее большинство всех возможных микроскопических состояний. Коль скоро наиболее вероятное состояние достигнуто, система отклоняется от него лишь на небольшие расстояния и па короткие промежутки времени. Иначе говоря, система лишь флуктуирует около состояния-аттрактора.
Из принципа порядка Больцмана следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются. Каково бы ни было начальное распределение в нашем первом примере, эволюция системы в конечном счете приведет к равномерному распределению N1 = N2. По достижении этого состояния необратимая макроскопическая эволюция системы завершается. Разумеется, частицы будут по-прежнему переходить из одной половины ящика в другую, но в среднем в любой момент времени число частиц, движущихся в одном направлении, будет совпадать с числом частиц, движущихся в противоположном направлении. В результате движение частиц способно вызывать лишь малые, короткоживущие флуктуации вблизи равновесного состояния N1 = N2. Таким образом, вероятностная интерпретация Больцмана позволяет понять специфическую особенность аттрактора, изучаемого равновесной термодинамикой.
На этом история не заканчивается, и всю третью часть нашей книги мы посвятим более подробному обсуждению затронутого круга проблем, а пока ограничимся несколькими замечаниями. В классической (и, как мы увидим в дальнейшем, квантовой) механике все определяется в терминах начальных состояний и законов движения. Каким же образом в описание природы входит вероятность? Обычно, отвечая на этот вопрос, ссылаются на то, что мы не знаем с абсолютной точностью динамическое состояние системы. Это - субъективистская интерпретация энтропии. Такая интерпретация была бы приемлема, если бы необратимые процессы мы рассматривали лишь как досадные помехи, соответствующие трению, или, более общо, как потери при функционировании тепловых машин. Но ныне ситуация изменилась. Как мы увидим, необратимым процессам отводится важнейшая конструктивная роль: так, без них была бы невозможна жизнь. Все это делает субъективистскую интерпретацию весьма спорной. В какой мере допустимо считать, что мы сами являемся результатом неполноты собственного знания, следствием того, что нашему наблюдению доступны лишь макроскопические состояния?
И в термодинамике, и в ее вероятностной интерпретации возникает асимметрия во времени: энтропия возрастает в направлении будущего, но не прошлого. Если мы рассматриваем динамические уравнения, инвариантные относительно обращения времени, то такая асимметрия представляется невозможной. Как мы увидим в дальнейшем, второе начало термодинамики представляет собой принцип отбора, совместимый с динамикой, но не выводимый из нее. Второе начало ограничивает возможные начальные условия, доступные для динамической системы. Следовательно, второе начало термодинамики знаменует радикальный отход от механистического мира классической или квантовой механики. Но вернемся к работам Больцмана.
До сих пор мы рассматривали изолированные системы, в которых число частиц и полная энергия заданы граничными условиями. Но объяснение Больцмана допускает обобщение на открытые системы, взаимодействующие с окружающей средой. В замкнутой системе, определяемой граничными условиями так, что ее температура Т поддерживается постоянной за счет теплообмена с окружающей средой, равновесие соответствует не максимуму энтропии, а минимуму аналогичной функции, получившей название свободной энергии: F=E-TS, где Е- энергия системы, Т - ее температура по так называемой шкале Кельвина (точка замерзания воды соответствует 273 °К, а точка кипения 373 °К).
Соотношение F=E-TS означает, что равновесие есть результат конкуренции между энергией и энтропией, а температура выступает в роли множителя, определяющего относительный вес этих двух факторов. При низких температурах перевес на стороне энергии, и мы наблюдаем образование таких упорядоченных (с малой энтропией) и низкоэнергетических структур, как кристаллы. Каждая молекула внутри таких структур взаимодействует со своими соседями, и их кинетическая энергия мала по сравнению с потенциальной энергией, обусловленной взаимодействиями между соседними молекулами. Каждая молекула как бы скована взаимодействием со своими соседями. При высоких температурах доминирует энтропия и в системе устанавливается молекулярный хаос. Важность относительного движения возрастает, и регулярность в строении кристалла нарушается: по мере увеличения температуры вещество переходит сначала в жидкое, а затем в газообразное состояние.
Энтропия S изолированной системы и свободная энергия системы при заданной температуре являются
примерами так называемых термодинамических потенциалов. Экстремумы (т. е. максимумы и минимумы) термодинамических потенциалов, в том числе S и F, задают состояния-аттракторы, к которым самопроизвольно стремится система, если ее граничные условия соответствуют определениям потенциалов.
Принцип порядка Больцмана может быть использован и при исследовании сосуществования структур (например, жидкой и твердой фаз) или равновесия между кристаллизовавшимся продуктом и тем же продуктом в растворе. Не следует, однако, забывать о том, что равновесные структуры определены на молекулярном уровне. Взаимодействие между молекулами на расстоянии порядка 10~8 см, т. е. порядка диаметра атомов в молекулах, делает устойчивой структуру кристаллов и наделяет их макроскопическими свойствами. С другой стороны, размеры кристалла не являются внутренним свойством структуры. Они зависят от того, какое количество вещества находится в кристаллической фазе при равновесии.
7. Карно и Дарвин
Равновесная термодинамика позволяет удовлетворительно объяснить огромное число физико-химических явлений. Тем не менее уместно спросить, охватывает ли понятие равновесной структуры все те различные структуры, с которыми мы сталкиваемся в природе. Ясно, что ответ на подобный вопрос может быть только отрицательным.
Равновесные структуры можно рассматривать как результат статистической компенсации активности микроскопических элементов (молекул, атомов). На глобальном уровне равновесные структуры, по определению, инертны. По той же причине они «бессмертны»: коль скоро равновесная структура образовалась, ее можно изолировать и поддерживать бесконечно долго без дальнейшего взаимодействия с окружающей средой. Но при изучении биологической клетки или города мы сталкиваемся с совершенно другой ситуацией: эти системы не только открыты, но и существуют только потому, что они открыты. Их питают потоки вещества и энергии, которые поступают из внешнего мира. Мы можем изолировать кристалл, но если города и клетки отрезать от окружающей среды, они погибнут. Последние являются неотъемлемой составной частью того мира, из которого они черпают необходимые для себя «питательные вещества», и их невозможно изолировать от потоков, которые они безостановочно перерабатывают.
Но не только живая природа глубоко чужда моделям термодинамического равновесия. Обмен веществом и энергией с окружающей средой происходит также во многих гидродинамических явлениях и в химических реакциях.
Трудно понять, каким образом принцип порядка Больцмана может быть применен во всех таких случаях. То, что с течением времени система становится более однородной, в терминах комплексов интерпретируется вполне естественно: в состоянии однородности, когда забыты «различия:», созданные начальными условиями, число комплексов максимально. Но решительно невозможно понять, оставаясь в рамках такого рода представлений, спонтанное возникновение конвекции. Конвективное течение требует когерентности, согласованного поведения огромного числа молекул. Это - противоположность хаоса, привилегированное состояние, которому может соответствовать лишь сравнительно небольшое число комплексов. По терминологии Больцмана, конвективное течение - пример «невероятного» состояния. Но если конвекцию надлежит считать «чудом», то что в таком случае говорить о жизни в ее многочисленных проявлениях и в высшей степени специфических особенностях даже в случае простейших организмов?
Вопрос о том, в какой мере равновесные модели соответствуют действительности, допускает обращение. Чтобы возникло равновесие, систему необходимо «защитить», «заэкранировать» от потоков, образующих в своей совокупности природу. Система должна быть «запаяиа» в консервную банку или помещена в стеклянный сосуд, как гомункулус в гётевском «Фаусте», обращающийся к создавшему его алхимику со следующими словами:
Прижми к груди свое дитя! Но - бережно, чтоб ие разбилась склянка. Вот неизбежная вещей изиаика: Природному Вселенная тесиа, Искусственному же замкнутость иужна!*
В привычном нам мире равновесие - состояние редкое и весьма хрупкое. Даже эволюция к состоянию равновесия возможна в мире, очень похожем на наш и находящемся на достаточном удалении от Солнца, чтобы имело смысл говорить по крайней мере о частичной изоляции системы (при температуре Солнца систему вряд ли разумно считать заключенной в «консервную банку>), но в то же время таком, в котором правилом является отсутствие равновесия, «тепличном» мире, где равновесие и неравновесие сосуществуют.
Однако на протяжении довольно длительного периода времени физики считали, что инертная структура кристаллов - единственный предсказуемый и воспроизводимый физический порядок, а приближение к равновесию- единственный тип эволюции, выводимый из фундаментальных законов физики. Любая попытка экстраполяции за пределы термодинамического описания была направлена на то, чтобы определить редкий и непредсказуемый тип эволюции, описанием которого занимаются биология и социальные науки. Как, например, совместить дарвиновскую эволюцию (статистический отбор редких событий) со статистическим исчезновением всех индивидуальных особенностей, всех редких событий, о котором говорит Больцман? Роже Кэллуа поставил вопрос так: «Могут ли и Карно и Дарвин быть правы?»21
Интересно отметить, насколько близок по существу дарвиновский подход к пути, избранному Больцманом. Вполне возможно, что в данном случае речь идет не просто о внешнем сходстве. Известно, что Больцман с восхищением воспринял идеи Дарвина. По теории Дарвина, сначала происходят спонтанные флуктуации видов, после чего вступает в силу отбор и начинается необратимая биологическая эволюция. Как и у Больцмана, случайность приводит к необратимости. Однако результат эволюции у Дарвина оказывается иным, чем у Больцмана. Интерпретация Больцмапа влечет за собой забывание начальных условий, «разрушение» начальиых структур, тогда как дарвиновская эволюция ассоциируется с самоорганизацией, с неуклонно возрастающей сложностью.
Резюмируя сказанное, мы можем утверждать, что равновесная термодинамика была первым ответом физики на проблему сложности природы. Этот ответ получил свое выражение в терминах диссипации энергии, забывания начальных условий и эволюции к хаосу. Классической динамике, науке о вечных, обратимых траекториях были чужды проблемы, стоявшие перед XIX в., в которых главная роль отводилась понятию эволюции. Равновесная термодинамика оказалась в состоянии противопоставить свое представление о времени представлениям других наук: с точки зрения термодинамики время означает деградацию и смерть. Как мы знаем, еще Дидро задавал вопрос: где именно вписываемся в инертный мир, подчиняющийся законам динамики, мы, организованные существа, наделенные способностью воспринимать ощущения? Существует и другой вопрос, над которым человечество билось более ста лет: какое значение имеет эволюция живых существ в мире, описываемом термодинамикой и все более беспорядочном? Какова связь между термодинамическим временем, обращенным к равновесию, и временем, в котором происходит эволюция ко все возрастающей сложности?
Был ли прав Бергсон? Верно ли, что время есть либо само по себе средство инновации, либо вообще ничто?
Глава 5 ТРИ ЭТАПА В РАЗВИТИИ ТЕРМОДИНАМИКИ
1. Поток и сила
Вернемся еще раз1 к изложению второго начала термодинамики, приведенному в предыдущей главе. Центральную роль в описании эволюции играет понятие энтропии. Как мы уже знаем, приращение энтропии допускает разложение в сумму двух членов: члена deS, связанного с обменом между системой и остальным миром, и члена d,S, описывающего производство энтропии вследствие необратимых процессов внутри системы. Второй член всегда положителен, за исключением термодинамического равновесия, когда он обращается в нуль. Для изолированной системы (deS = 0) состояние равновесия соответствует состоянию с максимумом энтропии.
Для того чтобы по достоинству оценить значение второго начала для физики, иам понадобится более подробное описание различных необратимых явлений, участвующих в производстве энтропии dtS или в производстве энтропии за единицу времени dtS/dt.
Особый интерес для нас представляют химические реакции. Вместе с теплопроводностью они являются прототипами необратимых процессов. Помимо того что они важны сами по себе, химические процессы играют первостепенную роль в биологии. В живых клетках идет не прекращающаяся ни на миг метаболическая деятельность. Тысячи химических реакций происходят одновременно для того, чтобы клетка могла получить необходимые питательные вещества, синтезировать специфические биомолекулы и удалить ненужные отходы. Скорости различных реакций так же, как и те места внутри клетки, где они протекают, вся химическая активность клетки строго координированы. Таким образом, биологическая структура сочетает в себе порядок и активность. В отличие от живых структур состояние равновесия остается инертным, даже если оно наделено структурой, как, например, в случае кристалла. Могут ли химические процессы дать нам ключ к постижению различия между поведением кристалла и клетки?
Прежде чем ответить на этот вопрос, нам придется рассмотреть химические реакции с двоякой точки зрения: и с кинетической, и с термодинамической.
С точки зрения кинетики важнейшей величиной является скорость реакции. Классическая теория химической кинетики исходит из допущения, согласно которому скорость химической реакции пропорциональна концентрациям веществ, участвующих в реакции. Действительно, реакция происходит в результате столкновений между молекулами, поэтому совершенно естественно предположить, что число столкновений пропорционально произведению концентраций реагирующих молекул.
Рассмотрим в качестве примера следующую простую реакцию: A+X-*-B + Y. Такая запись («уравнение реакции») означает, что всякий раз, когда молекула реагента А сталкивается с молекулой реагента X (А и X- исходные вещества), с определенной вероятностью происходит реакция, в результате которой образуется одна молекула вещества В и одна молекула вещества У (В и У-продукты реакции). Столкновение, при котором молекулы подвергаются столь сильной перестройке, называется эффективным. Обычно эффективные столкновения составляют лишь очень малую долю (например, 1/106) от общего числа столкновений. В большинстве случаев молекулы при столкновениях сохраняют свое тождество и лишь обмениваются энергией.
Химическая кинетика занимается изучением изменений концентрации различных веществ, участвующих в реакции. Эти изменения кинетика описывает с помощью дифференциальных уравнений - так же, как механика описывает движение ньютоновскими уравнениями. Но в химической кинетике мы вычисляем не ускорения, а скорости изменения концентраций, и эти скорости представимы в виде некоторых функций от концентраций реагентов. Например, скорость изменения концентрации X*,
т.е. производная dXjdt, пропорциональна произведений концентраций А и X в реакционной смеси, т. е. dX[dt- = -kAX, где k - коэффициент пропорциональности, зависящий от таких величин, как температура и давление, и служащий мерой доли эффективных столкновений, приводящих к реакции А <гХ-t-B+Y. Поскольку в нашем примере всякий раз, когда исчезает одна молекула вещества X, исчезает также одна молекула вещества А и образуется по одной молекуле веществ В и У, скорости изменения концентраций реагентов связаны соотношениями: dXldt=dA/dt=-dY/dt=-dB/dt.
Но если столкновение молекул X и А может «запустить» химическую реакцию, то столкновение молекул В и У может привести к обратной реакции. Это означает, что внутри описываемой химической системы может происходить вторая реакция: Y+B-X+A, которая приводит к дополнительному изменению концентрации X: dXjdt=k'YB. Полное изменение концентрации реагента определяется балансом между прямой и обратной реакциями. В нашем примере dX/dt= (-dY/dt=...)=-kAX+ + k'YB.
Будучи предоставленной самой себе, система, в которой происходят химические реакции, стремится к состоянию химического равновесия. Именно поэтому химическое равновесие можно считать типичным примером состояния-аттрактора. Каков бы ни был ее начальный состав, система самопроизвольно достигает этой конечной стадии, в которой прямые и обратные реакции статистически компенсируют друг друга, и поэтому дальнейшее суммарное изменение концентрации любого реагента прекращается (dX/dt = 0). В нашем примере из полной компенсации прямой и обратной реакций следует, что равновесные концентрации удовлетворяют соотношению AX/YB - k'/k = K. Оно известно под названием «закона действия масс», или закона Гульдберга - Вааге (К - константа равновесия). Определяемое законом действия масс соотношение концентраций соответствует химическому равновесию так же, как равномерность температуры (в случае изолированной системы) соответствует тепловому равновесию. Соответствующее производство энтропии равно нулю.
Прежде чем перейти к термодинамическому описанию химических реакций, рассмотрим кратко один дополнительный аспект кинетического описания. Скорость химической реакции зависит не только от концентраций реагирующих молекул и термодинамических параметров (например, от давления и температуры). Сказывается на ней и присутствие в системе химических веществ, влияющих на реакцию, но остающихся в итоге неизменными. Такого рода вещества называются катализаторами. Катализаторы могут, например, изменить значения констант реакций k или к' и даже заставить систему пойти по другому пути реакции. В биологии роль катализаторов играют специфические протеины - ферменты. Эти макромолекулы обладают пространственной конфигурацией, позволяющей им изменять скорость реакции. Ферменты часто бывают высокоспецифичными и влияют лишь на одну реакцию. Возможный механизм каталитического действия ферментов состоит в следующем. В молекуле ферментов имеются места, обладающие повышенной «реакционной способностью». Молекулы других веществ, участвующих в реакции, стремятся присоединиться к активным участкам молекулы фермента. Тем самым повышается вероятность их столкновения, а следовательно, и инициации химической реакции.
Весьма важным типом каталитических процессов (особенно в биологии) являются так называемые автокаталитическив реакции, в которых для синтеза некоторого вещества требуется присутствие этого же вещества. Иначе говоря, чтобы получить в результате реакции вещество X, мы должны начать с системы, содержащей X с самого начала. Например, очень часто молекула X активирует фермент: присоединяясь к молекуле фермента, X стабилизирует такую конфигурацию, которая делает легкодоступными активные участки. Автокаталитическим процессам соответствуют схемы реакций типа А + 2Х-> ЗХ (в присутствии молекул X одна молекула А превращается в одну молекулу X). Иначе говоря, нам необходимо иметь X, чтобы произвести еще X. Графически автокаталитические реакции принято изображать с помощью реакционной петли.
Если мы применим тот же метод, то для реакции А + 2Х->ЗХ получим кинетическое уравнение dXIdt= КАХ2, т. е. скорость изменения концентрации вещества X окажется пропорциональной квадрату его концентрации.
Другой весьма важный класс каталитических реакций в биологии - так называемый кросс-катализ - представлен для системы 2Х+ Y->-3X, B+X->Y+D на рис. 3.
В данном случае мы действительно имеем дело с кросс-катализом (т. е. «перекрестным катализом»), поскольку из Y получается X, а из X одновременно получается У. Катализ не обязательно увеличивает скорость реакции. Он может и замедлять, или ингибировать, ее. Графически это также изображается с помощью соответствующих петель обратной связи.
Характерные математические особенности нелинейных дифференциальных уравнений, описывающих химические реакции с каталитическими стадиями, как мы убедимся в дальнейшем, имеют жизненно важное значение для термодинамики сильно неравновесных химических процессов. Кроме того, как мы уже упоминали, биологами установлено, что петли обратной связи играют весьма существенную роль в метаболических функциях. Например, взаимосвязь между нуклеиновыми кислотами и протеинами может быть описана как кросс-катализ: нуклеиновые кислоты являются носителями информации, необходимой для синтеза протеинов, а протеины в свою очередь синтезируют нуклеиновые кислоты.
Помимо скоростей химических реакций, необходимо также учитывать скорости других необратимых процессов, таких, как перенос тепла и диффузия вещества. Скорости необратимых процессов называются также потоками и обозначаются буквой J. Общей теории, которая давала бы скорости, или потоки, не существует. В химических реакциях скорость зависит от молекулярного механизма, в чем нетрудно убедиться на уже приведенных примерах. Термодинамика необратимых процессов вводит величины еще одного типа: помимо скоростей или потоков J, она использует обобщенные силы X, т. е. «причины», вызывающие потоки. Простейшим примером может служить теплопроводность. Закон Фурье утверждает, что поток тепла J пропорционален градиенту температуры. Следовательно, градиент температуры есть та «сила», которая создает поток тепла. По определению, и поток и силы в состоянии теплового равновесия равны нулю. Как мы увидим в дальнейшем, производство энтропии P = diS/dt может быть вычислено по потоку и силам.
Рассмотрим определение обобщенной силы в случае химической реакции. Для простоты обратимся снова к реакции A + X -Y+B. Как мы уже знаем, в случае равновесия соотношение концентраций определяется законом действия масс. Теофил де Донде показал, что в качестве «химической силы> можно ввести сродство si-, определяющее направление протекания химической реакции так же, как градиент температуры определяет направление теплового потока. В рассматриваемом нами случае сродство пропорционально In KB Y/AX, где К - константа равновесия. Непосредственно видно, что сродство А обращается в нуль при достижении равновесия, где по закону действия масс AX/BY=K. Если мы станем выводить систему из равновесия, то сродство (по абсолютной величине) возрастет. В этом нетрудно убедиться, если исключить из системы некоторую долю молекул В по мере их образования в ходе реакции. Можно сказать, что сродство служит мерой расстояния между фактическим состоянием системы и ее равновесным состоянием. Кроме того, как мы упоминали, знак сродства определяет направление химической реакции. Если сродство А положительно, то молекул В и Y «слишком много» и суммарная реакция идет в направлении В+ + Y-»A+Х. И, наоборот, если сродство A отрицательно, то молекул В и Y «слишком мало» и суммарная реакция идет в обратном направлении.
Сродство в том смысле, в каком мы его определили, является уточненным вариантом старинного сродства, о котором писали еще алхимики, стремившиеся разобраться в способности химических веществ вступать в одни и не вступать в другие реакции, т. е. в «симпатиях» и «антипатиях» молекул. Идея о том, что химическая активность не сводима к механическим траекториям, к невозмутимому господству динамических законов, подчеркивалась с самого начала. Мы уже приводили обширную выдержку из Дидро. Позднее Ницше по другому поводу заметил, что смешно говорить о «химических законах», как будто химические вещества подчиняются законам, аналогичным законам морали. В химии, утверждал Ницше, не существует ограничений и каждое вещество вольно поступать как ему «вздумается». Речь идет не об «уважении», питаемом одним веществом к другому, а о силовой борьбе, о непрестанном подчинении слабого сильному2. Химическое равновесие с обращающимся в нуль сродством соответствует разрешению этого конфликта. С этой точки зрения специфичность термодинамического сродства перефразирует на современном языке старую проблему3 - проблему различия между скованным жесткими нормами безразличным миром динамических законов и миром спонтанной продуктивной активности, которому принадлежат химические реакции.
Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической физике мы можем по крайней мере представлять себе обратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в динамике всегда соответствует идеализации, но по крайней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изучением которых она занимается (химические превращения, характеризуемые скоростями реакций), необратимы. По этой причине химию невозможно свести к лежащей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эквивалентные роли.
Как и следовало ожидать, все необратимые процессы сопровождаются производством энтропии. Каждый из них входит в diS в виде произведения скорости, или потока J и соответствующей силы X. Полное производство
Энтропии в единицу времени P = d,Sldt равно сумме Всех таких вкладов, каждый из которых имеет вид произведения IX.
Термодинамику можно разделить на три большие области, изучение которых соответствует трем последовательным этапам в развитии термодинамики. В равновесной области производство энтропии, потоки и силы равны нулю. В слабо неравновесной области, где термодинамические силы «слабы», потоки Jk линейно зависят от сил. Наконец, третья область называется сильно неравновесной, или нелинейной, потому, что в ней потоки являются, вообще говоря, более сложными функциями сил. Охарактеризуем сначала некоторые общие особенности линейной термодинамики, характерные для слабо неравновесных систем.
2. Линейная термодинамика
В 1931 г. Ларе Онсагер открыл первые общие соотношения неравновесной термодинамики в линейной, слабо неравновесной области. Это были знаменитые «соотношения взаимности». Суть их чисто качественно сводится к следующему: если сила «один» (например, градиент температуры) для слабо неравновесных ситуаций воздействует на поток «два» (например, на диффузию), то сила «два» (градиент концентрации) воздействует на поток «один» (поток тепла). Соотношения взаимности неоднократно подвергались экспериментальной проверке. Например, всякий раз, когда градиент температуры индуцирует диффузию вещества, мы обнаруживаем, что градиент концентрации вызывает поток тепла через систему.
Следует особо подчеркнуть, что соотношения Онсагера носят общий характер. Несущественно, например, происходят ли необратимые процессы в газообразиой, жидкой или твердой среде. Соотношения взаимности выполняются независимо от допущений относительно агрегатного состояния вещества.
Соотношения взаимности Онсагера были первым значительным результатом в термодинамике необратимых процессов. Они показали, что предмет этой новой науки не некая плохо определенная «ничейная» земля, а заслуживает внимания ничуть не меньше, чем предмет траДйционной равновесной термодинамики, не уступай последнему в плодотворности. Если равновесная термодинамика была достижением XIX в., то неравновесная термодинамика возникла и развивалась в XX в. Вывод соотношений взаимности Онсагера ознаменовал сдвиг интересов от равновесных явлений к неравновесным.
Нельзя не упомянуть и о втором общем результате линейной неравновесной термодинамики. Нам уже приходилось говорить о термодинамических потенциалах, экстремумы которых соответствуют состояниям равновесия, к которому необратимо стремится термодинамическая эволюция. Для изолированной системы потенциалом является энтропия S, для замкнутой системы с заданной температурой - свободная энергия F. Термодинамика слабо неравновесных систем также вводит свой термодинамический потенциал. Весьма интересно, что таким потенциалом является само производство энтропии Р. Действительно, теорема о минимуме производства энтропии утверждает, что в области применимости соотношений Онсагера, т. е. в линейной области, система эволюционирует к стационарному состоянию, характеризуемому минимальным производством энтропии, совместимым с наложенными на систему связями. Эти связи определяются граничными условиями. Например, может возникнуть необходимость поддерживать две точки системы при заданных различных температурах нли организовать поток, который бы непрерывно подводил в реакционную зону исходные вещества и удалял продукты реакции.
Стационарное состояние, к которому эволюционирует система, заведомо является неравновесным состоянием, в котором диссипативные процессы происходят с ненулевыми скоростями. Но поскольку это состояние стационарно, все величины, описывающие систему (такие, как температура, концентрации), перестают в нем зависеть от времени. Не зависит от времени в стационарном состоянии и энтропия системы. Но тогда изменение энтропии во времени становится равным нулю: dS = 0. Как мы уже знаем, полное приращение энтропии состоит из двух членов: потока энтропии deS и положительного производства энтропии d,S; поэтому из равенства dS = 0 следует, что deS = -d,S<0. Поступающий из окружающей среды поток тепла или вещества определяет отрицательный поток энтропии deS, который компенсируется
производством энтропии d,S из-за необратимых процессов внутри системы. Отрицательный поток энтропии deS означает, что система поставляет энтропию внешнему миру. Следовательно, в стационарном состоянии активность системы непрерывно увеличивает энтропию окружающей среды. Все сказанное верно для любых стационарных состояний. Но теорема о минимуме производства энтропни утверждает нечто большее: то выделенное стационарное состояние, к которому стремится система, отличается тем, что в нем перенос энтропии в окружающую среду настолько мал, насколько это позволяют наложенные на систему граничные условия. В этом смысле равновесное состояние соответствует тому частному случаю, когда граничные условия допускают исчезающе малое производство энтропии. Иначе говоря, теорема о минимуме производства энтропии выражает своеобразную «инерцию» системы: когда граничные условия мешают системе перейти в состояние равновесия, она делает лучшее из того, что ей остается, - переходит в состояние энтропии, т. е. в состояние, которое настолько близко к состоянию равновесия, насколько это позволяют обстоятельства.
Таким образом, линейная термодинамика описывает стабильное, предсказуемое поведение систем, стремящихся к минимальному уровню активности, совместимому с питающими их потоками. Из того, что линейная неравновесная термодинамика так же, как и равновесная термодинамика, допускает описание с помощью потенциала, а именно производства энтропии, следует, что и при эволюции к равновесию, и при эволюции к стационарному состоянию система «забывает» начальные условия. Каковы бы ни были начальные условия, система рано или поздно перейдет в состояние, определяемое граничными условиями. В результате реакция такой системы на любое изменение граничных условий становится предсказуемой.
Мы видим, что в линейной области ситуация остается, по существу, такой же, как и в равновесной. Хотя производство энтропии не обращается в нуль, оно тем не менее не мешает необратимому изменению отождествляться с эволюцией к состоянию, полностью выводимому из общих законов. Такое «становление» неизбежно приводит к уничтожению любого различия, любой специфичности. Карно или Дарвин? Парадокс, на который мы обратили внимание в гл. 4, остается в силе. Между появлением естественных организованных форм, с одной стороны, и тенденцией к «забыванию» начальных условий наряду с возникающей при этом дезорганизацией - с другой, все еще существует зияющая брешь.
3. Вдали от равновесия
У истоков нелинейной термодинамики лежит нечто совершенно удивительное, факт, который на первый взгляд легко принять за неудачу: несмотря на все попытки, обобщение теоремы о минимуме производства энтропии для систем, в которых потоки уже не являются более линейными функциями сил, оказалось невозможным. Вдали от равновесия система по-прежнему может эволюционировать к некоторому стационарному состоянию, но это состояние, вообще говоря, уже не определяется с помощью надлежаще выбранного потенциала (аналогичного производству энтропии для слабо неравновесных состояний).
Отсутствие потенциальной функции ставит перед нами вопрос: что можно сказать относительно устойчивости состояний, к которым эволюционирует система? Действительно, до тех пор пока состояние-аттрактор определяется минимумом потенциала (например, производство энтропии), его устойчивость гарантирована. Правда, флуктуация может вывести системы из этого минимума. Но тогда второе начало термодинамики вынудит систему вернуться в исходный минимум. Таким образом, существование термодинамического потенциала делает систему «невосприимчивой» к флуктуациям. Располагая потенциалом, мы описываем «стабильный мир», в котором системы, эволюционируя, переходят в статичное состояние, установленное для них раз и навсегда.
Но когда термодинамические силы, действуя на систему, становятся достаточно «большими» и вынуждают ее покинуть линейную область, гарантировать устойчивость стационарного состояния или его независимость от флуктуации было бы опрометчиво. За пределами линейной области устойчивость уже не является следствием общих законов физики. Необходимо специально изучать, каким образом стационарное состояние реагирует па различные типы флуктуации, создаваемых системой или окружающей средой. В некоторых случаях анализ приводит к выводу, что состояние неустойчиво. В таких состояниях определенные флуктуации вместо того, чтобы затухать, усиливаются и завладевают всей системой, вынуждая ее эволюционировать к новому режиму, который может быть качественно отличным от стационарных состояний, соответствующих минимуму производства энтропии.
Термодинамика позволяет высказать исходное общее заключение относительно систем, в поведении которых могут обнаружиться отклонения от того типа порядка, который диктуется равновесным состоянием. Такие системы должны быть сильно неравновесными. В тех случаях, когда возможна неустойчивость, необходимо указать порог, расстояние от равновесия, за которым флуктуации могут приводить к новому режиму, отличному от «нормального» устойчивого поведения, характерного для равновесных или слабо неравновесных систем.
Чем такой вывод интересен?
Такого рода явления хорошо известны в гидродинамике- теории течений. Например, давно известно, что при определенной скорости ламинарное течение может смениться турбулентным. По свидетельству Мишеля Серра4, древние атомисты уделяли турбулентному течению столь большое внимание, что турбулентность с полным основанием можно считать основным источником вдохновения физики Лукреция. Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение - «клинамен». Возникающий вихрь дает начало миру, всем вещам в природе. «Клинамен», спонтанное непредсказуемое отклонение, нередко подвергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: «клинамен» представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современные специалисты по гидродинамике проверяют устойчивость течения жидкости, вводя возмущение, выражающее влияние молекулярного хаоса, который накладывается на среднее течение. Не так уж далеко мы ушли от «клипамена» Лукреция!
Долгое время турбулентность отождествлялась с хаосом или шумом. Сегодня мы знаем, что это не так. Хотя в макроскопическом масштабе турбулентное течение кажется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высокоорганизованно. Множество пространственных и временных масштабов, на которых разыгрывается турбулентность, соответствует когерентному поведению миллионов и миллионов молекул. С этой точки зрения переход от ламинарного течения к турбулентности является процессом самоорганизации. Часть энергии системы, которая в ламинарном течении находилась в тепловом движении молекул, переходит в макроскопическое организованное движение.
Еще одним поразительным примером неустойчивости стационарного состояния, приводящей к явлению спонтанной самоорганизации, может служить так называемая неустойчивость Бенара. Она возникает в горизонтальном слое жидкости с вертикальным градиентом температуры. Нижняя поверхность слоя жидкости нагревается до заданной температуры, более высокой, чем температура верхней поверхности. При таких граничных условиях в слое жидкости устанавливается стационарный поток тепла, идущий снизу вверх. Когда приложенный градиент температуры достигает некоторого порогового значения, состояние покоя жидкости (стационарное состояние, в котором перенос тепла осуществляется только с помощью теплопроводности, без конвекции) становится неустойчивым. Возникает конвекция, соответствующая когерентному, т. е. согласованному, движению ансамблей молекул; при этом перенос тепла увеличивается. Следовательно, при заданных связях (величине градиента температуры) производство энтропии в системе возрастает, что противоречит теореме о минимуме производства энтропии. Неустойчивость Бенара - явление весьма впечатляющее. Конвективное движение жидкости порождает сложную пространственную организацию системы. Миллионы молекул движутся согласованно, образуя конвективные ячейки в форме правильных шестиугольников некоторого характерного размера.
В гл. 4 мы ввели принцип порядка Больцмана, устанавливающий связь энтропии с вероятностью (числом комплексов Р). Применимо ли это соотношение в данном случае? Каждому распределению скоростей молекул соответствует некоторое число комплексов. Оно показывает, сколькими способами мы можем реализовать требуемое распределение скоростей, придавая каждой молекуле некоторую скорость. Все рассуждения аналогичны приведенным в гл. 4 при подсчете числа комплексов как функции от распределения молекул между двумя отделениями ящика. В случае неустойчивости Бенара число комплексов также велико в случае хаоса, т. е. значительного разброса скоростей. Наоборот, когерентное движение означает, что многие молекулы движутся почти с одинаковыми скоростями (разброс скоростей мал). Такому распределению соответствует столь малое число комплексов Р, что вероятность возникновения самоорганизации почти равна нулю. И все же самоорганизация происходит! Мы видим, таким образом, что подсчет числа комплексов, исходящий из гипотезы об априорном равнораспределении вероятностей молекулярных состояний, приводит к неверным выводам. То, что он не соответствует истинному положению вещей, становится особенно заметным, если мы обратимся к происхождению нового режима. В случае неустойчивости Бенара это - флуктуация, микроскопическое конвективное течение, которое, если верить принципу порядка Больцмана, обречено на вырождение, но вопреки ему усиливается и завладевает всей системой. Таким образом, за критическим значением приложенного градиента спонтанно устанавливается новый молекулярный порядок. Он соответствует гигантской флуктуации, стабилизируемой обменом энергией с внешним миром.
В сильно неравновесных условиях понятие вероятности, лежащее в основе больцмановского принципа порядка, становится неприменимым: наблюдаемые структуры не соответствуют максимуму комплексов. Не соответствует максимум комплексов и минимуму свободной энергии F=E-TS. Тенденция к выравниванию и «забыванию» начальных условий перестает быть общей тенденцией. В этом смысле старая проблема происхождения жизни предстает в ином свете. Заведомо ясно, что жизнь несовместима с принципом порядка Больцмана, но не противоречит тому типу поведения, который устанавливается в сильно неравновесных условиях.
Классическая термодинамика приводит к понятию равновесной структуры, примером которой может служить любой кристалл. Ячейки Бенара также представляют собой структуры, но совершенно иной природы. Именно поэтому мы ввели новое понятие - диссипативная структура, чтобы подчеркнуть тесную и на первый
взгляд парадоксальную взаимосвязь, существующую в таких ситуациях, с одной стороны, между структурой и порядком, а с другой - между диссипацией, или потерями. В гл. 4 мы виделн, что в классической термодинамике тепловой поток считался источником потерь. В ячейке Бенара тепловой поток становится источником порядка.
Таким образом, взаимодействие системы с внешним миром, ее погружение в неравновесные условия может стать исходным пунктом в формировании новых динамических состояний - диссипативных структур. Диссипативная структура отвечает некоторой форме супермолекулярной организации. Хотя параметры, описывающие кристаллические структуры, могут быть выведены из свойств образующих их молекул, и в частности из радиуса действия сил взаимного притяжения и отталкивания, ячейки Бенара, как и все диссипативные структуры, по существу, отражают глобальную ситуацию в порождающей их неравновесной системе. Описывающие их параметры макроскопические - порядка не 10~8 см (как расстояния между молекулами в кристалле), а нескольких сантиметров. Временные масштабы также другие: они соответствуют не молекулярным масштабам (например, периодам колебаний отдельных молекул, т. е. порядка 10-15 с), а макроскопическим, т. е. секундам, минутам или часам.
Но вернемся к химическим реакциям. Они обладают некоторыми весьма важными отличиями от проблемы Бенара. В ячейке Бенара неустойчивость имеет простое механическое происхождение. Когда мы нагреваем жидкость снизу, нижний слой жидкости становится менее плотным и центр тяжести перемещается вверх. Неудивительно поэтому, что за критической точкой система «опрокидывается» и возникает конвекция.
Химические системы не обладают такого рода механическими свойствами. Можно ли ожидать явления самоорганизации в химических системах? Мысленно мы представляем себе химические реакции так: во всех направлениях в пространстве несутся молекулы веществ и случайным образом сталкиваются. В такой картине не остается места для самоорганизации, и, быть может, в этом заключается одна из причин, по которым химические неустойчивости лишь недавно начали привлекать внимание исследователей. Имеется и еще одно отличие.
Предположим, что для независимой переменной X выполняется эволюционное уравнение dX/dt=f(X). Функцию f(X) всегда можно разложить в разность двух функций: f+X), соответствующую прибыли («наработке» вещества), и f-(X), соответствующую убытку
т. е. представить в'виде f (X) =f+(*)-/_(*). Стационарные состояния dXldt-0 соответствуют значениям X, при которых /+(X) =f-(X)
Равенство f+(X)=f_(X) означает, что стационарные состояния можно иайтн, построив точки пересечения графиков функций f+ и в одной точке. В противном случае характер пересечения позволяет сделать выводы об устойчивости соответсвующего стационарного
Возможны следующие четыре случая:
SI Стационарное состояние устойчиво относительно отрицательных флуктуации и неустойчиво относительно положительных флуктуации. Если систему слегка отклонить влево от S/, то положительная разность между f+ и f- вынудит систему вернуться в SI. Если же систему отклонить вправо от 5/, то отклонение будет нарастать.
55. Стационарное состояние устойчиво как относительно положительных, так и относительно отрицательных флуктуации.
IS. Стационарное состояние устойчиво только относительно положительных флуктуации.
//. Стационарное состояние неустойчиво как относительно положительных, так и относительно отрицательных флуктуации.
Все течения достаточно Далеко от равновесия становятся турбулентными (порог измеряется в безразмерных числах, например в числах Рейнольдса). Химические реакции ведут себя иначе. Для них большая удаленность от состояния равновесия - условие необходимое, но не достаточное. Во многих химических системах, какие бы связи па иих ни накладывались и как бы пи изменялись скорости реакций, стационарное состояние остается устойчивым и произвольные флуктуации затухают, как в слабо неравновесной области. В частности, так обстоит дело в системах, в которых наблюдается цепь последовательных превращений типа A-*-B-*-C-*-D-*-..., описываемая линейными дифференциальными уравнениями.
Судьба флуктуации, возмущающих химическую систему, а также новые ситуации, к которым она может эволюционировать, зависят от детального механизма химических реакций. В отличие от систем в слабо неравновесной области поведение сильно неравновесных систем весьма специфично. В сильно неравновесной области не существует универсального закона, из которого можно было бы вывести заключение относительно поведения всех без исключения систем. Каждая сильно неравновесная система требует особого рассмотрения. Каждую систему химических реакций необходимо исследовать особо - поведение ее может быть качественно отличным от поведения других систем.
Тем не менее один общий результат все же был получен, а именно: выведено необходимое условие химической неустойчивости. В цепи химических реакций, происходящих в системе, устойчивости стационарного состояния могут угрожать только стадии, содержащие автокаталитические петли, т. е. такие стадии, в которых продукт реакции участвует в синтезе самого себя. Этот вывод интересен тем, что вплотную подводит нас к фундаментальным достижениям молекулярной биологии (рис. 4).
4. За порогом химической неустойчивости
Изучение химических неустойчивостей в наши дни стало довольно обычным делом. И теоретические, и экспериментальные исследования ведутся во многих институтах и лабораториях. Как мы увидим, эти исследования
представляют интерес для широкого круга ученых - не только для математиков, физиков, химиков и биологов, но и для экономистов и социологов.
В сильно неравновесных условиях за порогом химической неустойчивости происходят различные новые явления. Для того чтобы описать их подробно, полезно начать с упрощенной теоретической модели, разработанной в последнее десятилетие в Брюсселе. Американские ученые назвали эту модель «брюсселятором», и это название так и прижилось в научной литературе. (Географические ассоциации, по-видимому, стали правилом в этой области: помимо «брюсселятора», существует «орегонатор» и даже самый юный «палоальтопатор»!) Опишем кратко «брюсселятор». Ранее мы уже отмечали те стадии реакции, которые ответственны за неустойчивость (см. рис. 3). Вещество X образуется из вещества А и превращается в вешество Е. Оно является «партнером» по кросс-катализу вещества Y: X образуется из Y в результате тримолекулярпой стадии, a Y образуется в результате реакции между X и веществом В.
В этой модели концентрации веществ Л, В, D и Е заданы (и являются так называемыми управляющими параметрами). Поведение системы исследуется при возрастающих значениях В. Концентрация А поддерживается постоянной. Стационарное состояние, к которому с наибольшей вероятностью эволюционирует такая система (состояние с dX/dt = dY/dt=O), соответствует концентрациям Х0 = А и У0 = В/А. В этом нетрудно убедиться, если выписать кинетические уравнения и найти стационарное состояние. Но как только концентрация В переходит критический порог (при прочих равных параметрах), это стационарное состояние становится неустойчивым. При переходе через критический порог оно становится неустойчивым фокусом, и система, выходя из этого фокуса, выходит, или «наматывается», на предельный цикл. Вместо того чтобы оставаться стационарными, концентрации X и Y начинают колебаться с отчетливо выраженной периодичностью. Период колебаний зависит от кинетических постоянных, характеризующих скорость реакции, и граничных условий, наложенных на всю систему (температуры, концентрации веществ Л, В и т. д.).
За критическим порогом система под действием флуктуации спонтанно покидает стационарное состояние Хо = = А, Y0 = B/A. При любых начальных условиях она стремится выйти на предельный цикл, периодическое движение по которому устойчиво. В результате мы получаем периодический химический процесс - химические часы. Остановимся на мгновение, чтобы подчеркнуть, сколь неожиданно такое явление. Предположим, что у нас имеются молекулы двух сортов: «красные» и «синие». Изза хаотического движения молекул можно было бы ожидать, что в какой-то момент в левой части сосуда окажется больше красных молекул, в следующий момент больше станет синих молекул и т. д. Цвет реакционной смеси с трудом поддается описанию: фиолетовый с беспорядочными переходами в синий и красный. Иную картину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий
и т. д. Поскольку смена окраски происходит через правильные интервалы времени, мы имеем дело с когерентным процессом.
Столь высокая упорядоченность, основанная на согласованном поведении миллиардов молекул, кажется неправдоподобной, и, если бы химические часы нельзя было бы наблюдать «во плоти», вряд ли кто-нибудь поверил, что такой процесс возможен. Для того чтобы одновременно изменить свой цвет, молекулы должны «каким-то образом» поддерживать связь между собой. Система должна вести себя как единое целое. К ключевому слову «связь», обозначающему весьма важное для многих областей человеческой деятельности (от химии до нейрофизиологии) понятие, мы будем еще возвращаться неоднократно. Возможно, что именно диссипативные структуры представляют собой один из простейших физнческих механизмов связи (communication).
Между простейшим механическим осциллятором - пружиной - и химическими часами имеется важное различие. Химические часы обладают вполне определенной периодичностью, соответствующей тому предельному циклу, на который наматывается их траектория. Что же касается пружины, то частота ее колебаний зависит от амплитуды. С этой точки зрения химические часы как хранители времени отличаются большей надежностью, чем пружина.
Но химические часы - отнюдь не единственный тип самоорганизации. До сих пор мы пренебрегали диффузией. В своих рассуждениях мы неизменно предполагали, что все вещества равномерно распределены по всему реакционному пространству. Разумеется, такое допущение не более чем идеализация: небольшие флуктуации всегда создают неоднородности в распределении концентраций и, следовательно, способствуют возникновению диффузии. Следовательно, в уравнениях, описывающих химические реакции, необходимо учитывать диффузию. Уравнения типа «реакция с диффузией» для «брюсселятора» обладают необычайно богатым запасом решений, отвечающих качественно различным типам поведения системы. Если в равновесном и в слабо неравновесном состояниях система остается пространственно однородной, то в сильно неравновесной области появление новых типов неустойчивости, в том числе усиление флуктуации, нарушает начальную пространственную симметрию. Таким образом, колебания во времени (химические часы) перестают быть единственным типом диссипативных структур, которые могут возникать в системе; в сильно неравновесной области могут появиться, например, колебания не только временные, но и пространственно-временные, Они соответствуют волнам концентраций химических веществ X и К, периодически проходящим по системе. Кроме того, в системе, особенно в тех случаях, когда коэффициенты диффузии веществ X и Y сильно отличаются друг от друга, могут устанавливаться стационарные, не зависящие от времени режимы и возникать устойчивые пространственные структуры.
Здесь нам необходимо еще раз остановиться: на этот раз для того, чтобы подчеркнуть, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. И в этом случае число комплексов, соответствующих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному распределению. Но неравновесные процессы могут приводить к ситуациям, кажущимся немыслимыми с классической точки зрения.
Прн переходе от одномерных задач к двухмерным или трехмерным число качественно различных диссипативпых структур, совместимых с заданным набором граничных условий, возрастает еще больше. Например, в двухмерной области, ограниченной окружностью, может возникнуть пространственно неоднородное стационарное состояние с выделенной осью. Перед нами новый, необычайно интересный процесс нарушения симметрии, особенно если мы вспомним, что одна из первых стадий в морфогенезе зародыша - образование градиента в системе. Такого рода проблемы мы еще рассмотрим и в этой главе, и в гл. 6.
До сих пор мы предполагали, что концентрации А, В, D и Е (наши управляющие параметры) равномерно распределены по всей реакционной системе. Стоит лишь нам отказаться от этого упрощения, как возникают новые явления. Например, система принимает «естественные размеры», зависящие от определяющих параметров. Тем самым система определяет свой внутренний масштаб, т. е. размеры области, занятой пространственными структурами, или часть пространства, в пределах которой проходят периодические волны концентраций.
Все перечисленные выше режимы дают весьма неполную картину необычайного многообразия явлений, возникающих в сильно неравновесной области. Упомянем хотя бы о множественности стационарных состояний. При заданных граничных условиях в сильно нелинейной системе могут существовать не одно, а несколько стационарных состояний, например одно состояние с богатым содержанием вещества X, а другое - с бедным содержанием того же вещества. Переход из одного состояния в другое играет важную роль в механизмах управления, встречающихся в биологических системах.
Начиная с классических работ Ляпунова и Пуанкаре, некоторые характерные точки и линии, а именно фокусы и предельные циклы, известны математикам как аттракторы устойчивых систем. Новым является то, что эти понятия качественной теории дифференциальных уравнений применимы к химическим системам. В этой связи заслуживает быть особо отмеченным тот факт, что первая работа по математической теории неустойчивостей в системе реакций с диффузией была опубликована Тьюрингом в 1952 г. Сравнительно недавно были обнаружены новые типы аттракторов. Они появляются только при большем числе независимых переменных (в «брюсселяторе» число независимых переменных равно двум: это переменные концентрации X и Y). В частности, в трехмерных системах появляются так называемые странные аттракторы, которым уже не соответствует периодическое движение, сложной структуре такого странного аттрактора для модели, обобщающей «брюсселятор» на случай периодического подвода извне вещества X. Замечательно, что большинство описанных нами типов поведения реально наблюдалось в неорганической химии и в некоторых биологических системах.
В неорганической химии наиболее известным примером колебательной системы является реакция Белоусова - Жаботинского, открытая в начале 50-х гг. нашего века. Соответствующая схема реакций, получившая название орегонатор, была предложена Нойесом и сотрудниками. По существу, она аналогична «брюсселятору», но отличается большей сложностью. Реакция Белоусова- Жаботинского состоит в окислении органической (малоновой) кислоты броматом калия в присутствии соответствующего катализатора - церия, марганца или ферроина.
В различных экспериментальных условиях у одной и той же системы могут наблюдаться различные формы самоорганизации - химические часы, устойчивая пространственная дифференциация или образование волн химической активности на макроскопических расстояниях5.
Обратимся теперь к самому интересному вопросу: что дают все эти результаты для понимания функционирования живых систем?
5. Первое знакомство с молекулярной биологией
Ранее в этой главе мы уже показали, что в сильно неравновесных условиях протекают процессы самоорганизации различных типов. Одни из них приводят к установлению химических колебаний, другие - к появлению пространственных структур. Мы видели, что основным условием возникновения явлений самоорганизации является существование каталитических эффектов.
В то время как в неорганическом мире обратная связь между «следствиями» (конечными продуктами) нелинейных реакций и породившими их «причинами» встречается сравнительно редко, в живых системах обратная связь (как установлено молекулярной биологией), напротив, является скорее правилом, чем исключением. Автокатализ (присутствие вещества X ускоряет процесс образования его в результате реакции), автоипгибиция (присутствие вещества X блокирует катализ, необходимый для производства X) и кросс-катализ (каждое нз двух веществ, принадлежащих различным цепям реакций, является катализатором для синтеза другого) лежат в основе классического механизма регуляции, обеспечивающего согласованность метаболической функции.
Нам бы хотелось подчеркнуть одно любопытное различие. В примерах самоорганизации, известных из неорганической химии, молекулы, участвующие в реакциях, просты, тогда как механизмы реакций сложны (например, в реакции Белоусова-Жаботинского удалось установить около тридцати различных промежуточных соединений). С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое. Образующие их молекулы - итог предшествующей эволюции; они были отобраны для участия в автокаталитических механизмах, призванных породить весьма специфические формы процессов организации.
Описание сложной сети метаболической активности и торможения является существенным шагом в понимании функциональной логики биологических систем. К последней мы относим включение в нужный момент синтеза необходимых веществ и блокирование тех химических реакций, неиспользованные продукты которых могли бы угрожать клетке переполнением.
Основной механизм, с помощью которого молекулярная биология объясняет передачу и переработку генетической информации, по существу, является петлей обратной связи, т. е. нелинейным механизмом. Дезоксирибонуклеиновая кислота (ДНК), содержащая в линейно упорядоченном виде всю информацию, необходимую для синтеза различных основных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе которых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтезированных протеинов, активируя и регулируя не только различные стадии превращений, но и автокаталитический механизм репликации ДНК, позволяющий копировать генетическую информацию с такой же скоростью, с какой размножаются клетки.
Молекулярная биология - один из наиболее ярких примеров конвергенции двух наук. Понимание процессов, происходящих на молекулярном уровне в биологических системах, требует взаимно дополняющего развития физики и биологии, первой - в направлении сложного, второй - простого.
Фактически уже сейчас физика имеет дело с исследованием сложных ситуаций, далеких от идеализации, описываемых равновесной термодинамикой, а молекулярная биология добилась больших успехов в установлении связи живых структур с относительно небольшим числом основных биомолекул. Исследуя множество самых различных химических механизмов, молекулярная биология установила мельчайшие детали цепей метаболических реакций, выяснила тонкую, сложную логику регулирования, ингибирования и активации каталитической функции ферментов, связанных с критическими стадиями каждой из метаболических цепей. Тем самым молекулярная биология установила на микроскопическом уровне основы тех неустойчивостей, которые могут происходить в сильно неравновесных условиях.
В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с одной стороны, они являются вместилищем многочисленных химических превращений, с другой - демонстрируют великолепную пространственно-временную организацию с весьма неравномерным распределением биохимического материала. Ныне перед нами открывается возможность связать воедино функцию и структуру. Рассмотрим кратко два примера, интенсивно исследовавшиеся в последние годы.
Начнем с гликолиза: цепи метаболических реакций, приводящих к расщеплению глюкозы и синтезу аденозннтрифосфата (АТФ)-универсального аккумулятора энергии, общего для всех живых клеток. При расщеплении каждой молекулы глюкозы две молекулы АДФ (аденозиндифосфата) превращаются в две молекулы АТФ. Гликолиз может служить наглядным примером взаимной дополнительности аналитического подхода биологии и физического исследования устойчивости в сильно неравновесной области6.
В ходе биохимических экспериментов были обнаружены колебания во времени концентраций, связанных с гликолитическим циклом7. Было показано, что эти колебания определяются ключевой стадией в цепи реакций- стадией, активируемой АДФ и ингибируемой АТФ. Это - типично нелинейное явление, хорошо приспособленное к регулированию метаболизма. Всякий раз, когда клетка черпает энергию из своих энергетических резервов, она использует фосфатные связи, и АТФ превращается в АДФ. Таким образом, накопление АДФ внутри клетки свидетельствует об интенсивном потреблении энергии и необходимости пополнить энергетические запасы, в то время как накопление АТФ означает, что расщепление глюкозы может происходить в более медленном темпе.
Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порождать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энергетических процессов в клетке, зависящих от концентрации АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.
Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции протекают в сильно неравновесных условиях. Такие расчеты были ныполнены Бенно Хессом8, а полученные результаты обобщены и на другие системы. При обычных условиях гликолитический цикл соответствует химическим часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.
С точки зрения термодинамики живая система отличается необычайной сложностью. Одни реакции протекают в слабо неравновесных условиях, другие - в сильно неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энергии несколько напоминает течение реки - то спокойной и плавной, то низвергающейся водопадом и высвобождающей часть накопленной в ней энергии.
Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.
Когда запас питательных веществ в той среде, в которой живут и размножаются коллективные амебы, иссякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, насчитывающую несколько десятков тысяч клеток. Образовавшийся «псевдоплазмодий» претерпевает дифференциацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», наполненную спорами, которые отделяются и распространяются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размножаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окружающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресурсы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.
Исследование первой стадии образования колонии показало, что она начинается с волн перемещения отдельных амеб, распространяющихся по их популяции к спонтанно возникающему «центру притяжения». Экспериментальные исследования и анализ теоретических моделей установили, что миграция является откликом клеток на существование в среде градиента концентрации ключевого вещества - циклической АМФ, периодически испускаемого сначала амебой, ставшей центром притяжения, а затем - после срабатывания механизма задержки - и другими амебами. И в этом случае мы видим, какую важную роль играют химические часы. Как уже неоднократно подчеркивалось, они, по существу, являются новым средством связи, В случае коллективных амеб механизм самоорганизации приводит к установлению связи между клетками.
Мы хотели бы подчеркнуть еще один аспект. Образование колоний коллективных амеб - типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», испускающего циклическую АМФ, сигнализирует о потере устойчивости нормальной питательной среды, т. е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов - циклической АМФ - и, таким образом, стать «центром притяжения» для остальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.
6. Бифуркации и нарушение симметрии
Рассмотрим теперь более подробно, как возникает самоорганизация и какие процессы начинают происходить, когда ее порог оказывается превзойденным. В равновесном или слабо неравновесном состоянии существует только одно стационарное состояние, зависящее от значений управляющих параметров. Обозначим управляющий параметр через X (им может быть, например, концентрация вещества В в «брюсселяторе», описание которого приведено в разд. «За порогом химической неустойчивости»). Проследим за тем, как изменяется состояние системы с возрастанием значения В, Увеличивая концентрацию В, мы как бы уводим систему все дальше и дальше от равновесия. При некотором значении В мы достигаем порога устойчивости термодинамической eei ей. Обычно это критическое значение называется точкой бифуркации. (На особую роль этих точек обратил внимание Максвелл, размышляя над отношением между детерминизмом и свободой выбора (см. гл. 2 разд. «Язык динамики»).]
Каждое из этих распределений зеркально симметрично другому: на рис. 12 концентрация X больше справа, на рис. 13 - слева. Каким образом система выбирает между правым и левым? В этом выборе неизбежно присутствует элемент случайности: макроскопическое уравнение не в состоянии предсказать, по какой траектории
Можно было бы ожидать, что при многократном повторении эксперимента при переходе через точку бифуркации система в среднем в половине случаев окажется в состоянии с максимумом концентрации справа, а в половине случаев - в состоянии с максимумом концентрации слева. Возникает другой интересный вопрос. В окружающем нас мире некоторые простые фундаментальные симметрии нарушены10. Кто не замечал, например, что большинство раковин закручено преимущественно в одну сторону? Пастер пошел дальше и усмотрел в дисимметрии, т, е. в нарушении симметрии, характерную особенность жизни. Как теперь известно, молекула самой важной нуклеиновой кислоты ДНК имеет форму винтовой линии, закрученной влево. Как возникает такая дисимметрия? Один из распространенных ответов на этот вопрос гласит: днсимметрия обусловлена единичным событием, случайным образом отдавшим предпочтение одному из двух возможных исходов. После того как выбор произведен, в дело вступает автокаталитический процесс и левосторонняя структура порождает новые левосторонние структуры. Другой ответ предполагает «войну» между лево- и правосторонними структурами, в результате которой одни структуры уничтожают другие. Удовлетворительным ответом на этот вопрос мы пока не располагаем. Говорить о единичных событиях вряд ли уместно. Необходимо более «систематическое» объяснение.
Недавно был открыт еще один пример принципиально новых свойств, приобретаемых системами в сильно неравновесных условиях: системы начинают «воспринимать» внешние поля, например гравитационное поле, в результате чего появляется возможность отбора конфигураций.
Каким образом внешнее (например, гравитационное) поле сказалось бы на равновесной ситуации? Ответ на этот вопрос дает принцип порядка Больцмана: все зависит от величины отношения - потенциальная энергия/тепловая энергия. Для гравитационного поля Земли эта величина мала. Чтобы достичь сколько-нибудь заметного изменения давления или химического состава атмосферы, нам понадобилось бы взобраться на достаточно высокую гору. Но вспомним ячейку Бенара. С точки зрения механики ее неустойчивость обусловлена повышением центра тяжести вследствие теплового расширения. Иначе говоря, в эффекте Бенара гравитация играет существенную роль и приводит к новой структуре, несмотря на то что толщина самой ячейки Бенара может достигать лишь нескольких миллиметров. Действие гравитации на столь топкий слой жидкости было бы пренебрежимо малым в равновесной ситуации, но в неравновесной ситуации, вызванной градиентом температур, приводит даже в таком тонком слое к наблюдаемым макроскопическим эффектам. Неравновесность усиливает действие гравитации11.
Предположим, что в отсутствие гравитации, т. е. при g = 0, мы имеем, как на рис. 12 и 13, асимметричную конфигурацию «снизу вверх» и ее зеркальное отражение - конфигурацию «сверху вниз». Оба распределения равновероятны, но если включить g, то бифуркационные уравнения изменятся, так как поток диффузии будет содержать член, пропорциональный g. В результате мы получим диаграмму, изображенную на рис. 14. Исходная бифуркационная диаграмма исчезнет, сколь бы малым ни было включенное гравитационное поле. Одна структура а) на новой диаграмме возникает при увеличении параметра бифуркации непрерывно, другая b) достижима лишь при конечном возмущении. Следуя по ветвн а), мы ожидаем, что и система будет изменяться непрерывно. Наши ожидания оправдаются при условии, если расстояние S между двумя ветвями велико по сравнению с амплитудой тепловых флуктуации концентрации X. Происходит то, что мы называем «вынужденной» бифуркацией. Как и прежде, вблизи критического значения yс управляющего параметра может произойти самоорганизация. Но теперь одна из двух возможных структур предпочтительнее другой и подлежит отбору.
Важно отметить, что в зависимости от химического процесса, ответственного за бифуркацию, описанный выше механизм может обладать необычайной чувствительностью. Как уже упоминалось, вещество обретает способность воспринимать» различия, неощутимые в равновесных условиях. Столь высокая чувствительность наводит на мысль о простейших организмах, например о бактериях, способных, как известно, реагировать на электрические или магнитные поля. В более общем плане это означает, что в сильно неравновесной химии возможна «адаптация» химических процессов к внешним условиям. Этим сильно неравновесная область разительно отличается от равновесной, где для перехода от одной структуры к другой требуются сильные возмущения или изменения граничных условий.
Еще одним примером спонтанной «адаптивной организации» системы, ее «подстройки» к окружающей среде может служить чувствительность сильно неравновесных состояний к внешним флуктуациям. Приведем один пример12 самоорганизации как функции флуктуирующих внешних условий. Простейшей из всех мыслимых химических реакций является реакция изомеризации А=*±В. В нашей модели вещество Л может участвовать и в другой реакции: А+свет->-Л*-*А+тепло (молекула Л, поглощая свет, переходит в возбужденное состояние Л*, из которого возвращается в основное состояние, испуская при этом тепло). Мы предполагаем, что обе реакции происходят в замкнутой системе, способной обмениваться с внешним миром только светом и теплом. В системе имеется нелинейность, так как превращение молекулы В в молекулу Л сопровождается поглощением тепла: чем выше температура, тем быстрее образуется Л. Кроме того, чем выше концентрация Л, чем сильнее Л поглощает свет и преобразует его в тепло, тем выше температура вещества Л. Таким образом, Л катализирует образование самого себя.
Можно ожидать, что концентрация Л, соответствующая стационарному состоянию, возрастет с увеличением интенсивности света, и действительно так и происходит. Но, начиная с некоторой критической точки, мы сталкиваемся с одним из типичных сильно неравновесных явлений: сосуществованием множественных стационарных состояний. При одних и тех же условиях (например, интенсивности света и температуре) система может находиться в двух различных устойчивых стационарных состояниях, отвечающих двум различным концентрациям Л. Третье (неустойчивое) стационарное состояние соответствует порогу между двумя устойчивыми стационарными состояниями. Сосуществование стационарных состояний порождает такое хорошо известное явление, как гистерезис. По это еще не все. Если интенсивность света вместо того, чтобы быть постоянной, начнет случайным образом флуктуировать, то наблюдаемая нами картина резко изменится. Зона сосуществования двух стационарных состояний расширится, и при некоторых значениях параметров станет возможным сосуществование трех стационарных устойчивых состояний.
В таких положениях случайная флуктуация во внешнем потоке, часто называемая шумом, - отнюдь не досадная помеха: она порождает качественно новые типы режимов, для осуществления которых при детерминистических потоках потребовались бы несравненно более сложные схемы реакций. Важно помнить и о том, что случайный шум неизбежно присутствует в потоках в
любой «естественной системе». Например, в биологических или экологических системах параметры, определяющие взаимодействие с окружающей средой, как правило, недопустимо считать постоянными. И клетка, и экологическая ниша черпают все необходимое для себя из окружающей их среды; влага, рН, концентрация солей, свет и концентрация питательных веществ образуют непрестанно флуктуирующую среду. Чувствительность неравновесных состояний не только к флуктуациям, обусловленным их внутренней активностью, но и к флуктуациям, поступающим из окружающей среды, открывает перед биологическими исследованиями новые перспективы.
7. Каскады бифуркаций и переходы к хаосу
В предыдущем разделе мы занимались рассмотрением только первой, или, как предпочитают говорить математики, первичной, бифуркации, которая возникает, когда мы вынуждаем систему перейти порог устойчивости. Далеко не исчерпывая новые решения, которые при этом могут появиться, первичная бифуркация приводит к появлению лишь одного характерного времени (периода предельного цикла) или одной характерной длины. Для того чтобы получить всю картину пространственно-временной активности, наблюдаемой в химических или биологических системах, необходимо продвинуться по бифуркационной диаграмме дальше.
Мы уже упоминали о явлениях, возникающих в результате сложного взаимодействия огромного числа частот в гидродинамических или химических системах. Рассмотрим хотя бы ячейки Бенара, возникающие на определенном расстоянии от равновесия. При дальнейшем удалении от теплового равновесия конвективный поток начинает колебаться во времени. Чем дальше мы уходим от равновесия, тем больше частот появляется в колебаниях, пока наконец не произойдет переход в турбулентный режим13. Взаимодействие колебаний с различными частотами создает предпосылки для возникновения больших флуктуации. Область на бифуркационной диаграмме, определяемая значениями параметров, при которых возможны сильные флуктуации, обычно принято называть хаотической. Иногда порядок, или когерентность, чередуется с тепловым хаосом и неравновесным турбулентным хаосом. Так происходит, например, в случае неустойчивости Бенара: если увеличивать градиент температуры, то конфигурация конвективных потоков усложнится, появятся колебания, а при дальнейшем увеличении градиента упорядоченная структура исчезнет, уступив место хаосу. Не следует смешивать, однако, равновесный тепловой хаос с неравновесным турбулентным хаосом. В тепловом хаосе, возникающем в равновесных условиях, все характерные пространственные и временные масштабы микроскопического порядка. В турбулентном хаосе число макроскопических пространственных и временных масштабов столь велико, что поведение системы кажется хаотическим. В химии порядок и хаос связаны между собой сложными отношениями: упорядоченные (колебательные) режимы чередуются с хаотическими. Такая перемежаемость, например, наблюдалась в реакции Белоусова-Жаботинского как функция скорости потока.
Во многих случаях довольно трудно провести четкую'
границу между такими понятиями, как «хаос» и «порядок». К. каким системам следует отнести, например, тропический лес: к упорядоченным или хаотическим? История любого вида животных может показаться случайной, зависящей от других видов и флуктуации окружающей среды. Тем не менее трудно отделаться от впечатления, что общая структура тропического леса, например все многообразие встречающихся в нем видов животных и растений, соответствует некоторому архетипу порядка. Какой бы конкретный смысл мы ни вкладывали в термины «порядок» и «хаос», ясно, что в некоторых случаях последовательность бифуркаций приводит к необратимой эволюции и детерминированность характеристических частот порождает все большую случайность, обусловленную огромным числом частот, участвующих в процессе.
Сравнительно недавно внимание ученых привлек необычайно простой путь к хаосу, получивший название последовательность Фейгенбаума. Обнаруженная Фейгенбаумом закономерность относится к любой системе, поведение которой характеризуется весьма общим свойством, а именно: в определенной области значений параметров система действует в периодическом режиме с периодом Т; при переходе через порог период удваивается и становится равным 2T, при переходе через следующий порог период в очередной раз удваивается и становится равным 4Т и т. д. Таким образом, система характеризуется последовательностью бифуркаций удвоения периода. Последовательность Фейгенбаума - один из типичных маршрутов, ведущих от простого периодического режима к сложному апериодическому, наступающему в пределе при бесконечном удвоении периода. Фейгенбаум открыл, что этот маршрут характеризуется универсальными постоянными, значения которых не зависят от конкретных особенностей механизма, коль скоро система обладает качественным свойством удвоения периода. «Большинство поддающихся измерению свойств любой такой системы в этом апериодическом пределе может быть определено, по существу, без учета каких-либо специфических особенностей уравнения, описывающего каждую конкретную систему...»14
В других случаях (например, в таком, который представлен на рис. 16) эволюция системы содержит как детерминистические, так и стохастические элементы.
Историческая» траектория, по которой эволюционирует система при увеличении управляющего параметра, характеризуется чередованием устойчивых областей, где доминируют детерминистические законы, и неустойчивых областей вблизи точек бифуркации, где перед системой открывается возможность выбора одного из нескольких вариантов будущего. И детерминистический характер кинетических уравнений, позволяющих вычислить заранее набор возможных состояний и определить их относительную устойчивость, и случайные флуктуации, «выбирающие» одно из нескольких возможных состояний вблизи точки бифуркации, теснейшим образом взаимосвязаны. Эта смесь необходимости и случайности и составляет «историю» системы.
8. От Евклида к Аристотелю
Одной из наиболее интересных особенностей диссипативных структур является их когерентность. Система ведет себя как единое целое и как если бы она была вместилищем дальнодействующих сил. Несмотря на то что силы молекулярного взаимодействия являются короткодействующими (действуют на расстояниях порядка 10~8 см), система структурируется так, как если бы каждая молекула была «информирована» о состоянии системы в целом.
Утверждение о том, что современная наука родилась тогда, когда на смену пространству Аристотеля {представление о котором было навеяно организацией и согласованностью биологических функций) пришло однородное и изотропное пространство Евклида, высказывалось довольно часто, и мы неоднократно повторяли его. Однако теория диссипативных структур сближает нашу позицию с концепцией Аристотеля. Имеем ли мы дело с химическими часами, концентрационными волнами или неоднородным распределением химических веществ, неустойчивость приводит к нарушению симметрии, как временной, так и пространственной. Например, при движении по предельному циклу никакие два момента времени не являются эквивалентными: химическая реакция обретает фазу, подобно тому как фазой характеризуется световая волна. Другой пример: когда однородное состояние становится неустойчивым и возникает выделенное направление, пространство перестает быть изотропным. Мы движемся, таким образом, от пространства Евклида к пространству Аристотеля!
Трудно удержаться от искушения и не порассуждать о том, что нарушение пространственной и временной симметрии играет важную роль в интереснейших явлениях морфогенеза. Наблюдая эти явления, многие склонялись к выводу, что биологическая система в своем развитии преследует некоторую внутреннюю цель, своего рода план, реализуемый зародышем по мере его роста. В начале XX в. немецкий эмбриолог Ганс Дриш полагал, что развитием зародыша управляет некий нематериальный фактор - энтелехия. Дриш обнаружил, что уже на некоторой раиней стадии зародыш способен выдерживать сильнейшие возмущающие воздействия и, несмотря на них, развиваться в нормальный функционирующий организм. В то же время, просматривая развитие зародыша, отснятое на пленку, мы «видим» скачки, соответствующие качественным реорганизациям тканей, вслед за которыми идут более «спокойные» периоды количественного роста. К счастью, совершаемые при таких скачках ошибки немногочисленны, ибо скачки реализуются воспроизводимо. Мы могли бы считать, что в основе главного механизма эволюции лежит игра бифуркаций как механизмов зондирования и отбора химических взаимодействий, стабилизирующих ту ила иную траекторию. Такую идею выдвинул около сорока лет назад биолог Уоддингтон. Для описания стабилизированных путей развития он ввел специальное понятие- креод. По замыслу Уоддингтона, креод должен был соответствовать возможным линиям развития, возникающим под влиянием двойного императива - гибкости н надежности15. Ясно, что затронутая Уоддингтоном проблема необычайно сложна, и мы сможем коснуться ее лишь весьма бегло.
Много лет назад эмбриологи ввели понятие морфогенетического поля и высказали гипотезу о том, что дифференциация клетки зависит от ее положения в этом поле. Но как клетка «узнает» о своем положении? Один из возможных ответов состоит в том, что клетка, по-видимому, реагирует на градиент концентрации вещества, определяющего морфогенез, - морфоген. Такие градиенты действительно могли бы возникать в сильно неравновесных условиях из-за неустойчивостей, приводящих к нарушениям симметрии. Если бы возник градиент концентрации морфогена, то каждая клетка оказалась, бы в иной окружающей среде, чем остальные, что привело бы к синтезу каждой клеткой своего, специфического набора протеинов. Такая модель, ныне широко используемая, по-видимому, хорошо согласуется с экспериментальными данными. Сошлемся хотя бы на работу Кауфмана по эмбриональному развитию дрозофилы16. В этой работе ответственность за распределение альтернативных программ развития по различным группам клеток в ранней стадии эмбрионального развития возлагается на систему реакций с диффузией. Каждая «секция» зародыша характеризуется единственной комбинацией двоичных выборов, а каждый акт выбора происходит в результате бифуркации, нарушающей пространственную симметрию. Модель Кауфмана позволяет успешно предсказывать исход трансплантации клеток как функции расстояния между областью, откуда берется пересаживаемая клетка, и областью, куда ее пересаживают, т. е. как функции числа различий между бинарными выборами, или «переключений», определяющих каждый из них.
Такие идеи и модели особенно важны для биологических систем, у которых зародыш начинает развиваться в состоянии, обладающем наружной сферической симметрией (например, бурая водоросль «фукус» или зеленая водоросль «ацетабулярия»). Уместно, однако, спросить: однороден ли зародыш с самого начала? Предположим, что в начальной среде имеются небольшие неоднородности. Являются ли они причиной дальнейшей эволюции или только направляют эволюцию к образованию той или иной структуры? Точные ответы на эти вопросы пока не известны. Но одно установлено определенно: неустойчивость, связанную с химическими реакциями и переносом, можно считать единственным общим механизмом, способным нарушить симметрию первоначально однородного состояния.
Самая возможность такого вывода уводит нас далеко за рамки векового конфликта между редукционистами и антиредукционистами. Со времен Аристотеля неоднократно высказывалось одно и то же убеждение (высказывания Шталя, Гегеля, Бергсона и других антиреАукционистов мы уже приводили): чтобы связать между собой различные уровни описания и учесть взаимосвязь между поведением целого и отдельных частей, необходимо понятие сложной организации. В противовес редукционистам, усматривавшим единственную «причину> организации в частях, Аристотель с его формальной причиной, Гегель с его абсолютной идеей в природе, Бергсон с его простым, необоримым актом творения организации утверждали, что целое играет главенствующую роль. Вот что говорится об этом у Бергсона:
«В общем, когда один и тот же объект предстает в одном аспекте как простой, а в другом - как бесконечно сложный, эти два аспекта не равнозначны или, точнее, не обладают реальностью в одной и той же мере. В подобных случаях простота присуща самому объекту, а бесконечная сложность - точкам зрения, с которых объект открывается нам, когда мы, например, обходим вокруг него, символам, в которых наши чувства или разум представляют нам объект, или, более общо, элементам различного порядка, с помощью которых мы пытаемся искусственно имитировать объект, но с которыми он остается несоизмеримым, будучи другой природы, чем они. Гениальный художник изобразил на холсте некую фигуру. Мы можем имитировать его картину многоцветными кусочками мозаики. Контуры и оттенки красок модели мы передадим тем точнее, чем меньше наши кусочки по размеру, чем их больше и чем больше градаций по цвету. Но нам понадобилось бы бесконечно много бесконечно малых элементов с бесконечно тонкой градацией цвета, чтобы получить точный эквивалент фигуры, которую художник мыслил как простую, которую он хотел передать как нечто целое на холсте и которая тем полнее, чем сильнее поражает нас как проекция неделимой интуиции»17.
В биологии конфликт между редукционистами и антиредукционистами часто принимал форму конфликта между утверждением внешней и внутренней целесообразности. Идея имманентного организующего разума тем самым часто противопоставляется модели организации, заимствованной из технологии своего времени (механических, тепловых, кибернетических машин), на что немедленно следует возражение: «А кто построил машину, автомат, подчиняющийся внешней целесообразности?»
Как подчеркивал в начале нашего века Бергсон, и технологическая модель, и виталистская идея о внутренней организующей силе выражают неспособность воспринимать эволюционную организацию без непосредственного ее соотнесения с некоторой предсуществующей целью. И в наши дни, несмотря на впечатляющие успехи молекулярной биологии, концептуальная ситуация остается почти такой же, как в начале XX в.: аргументация Бергсона в полной мере относится к таким метафорам, как «организатор», «регулятор» и «генетическая программа». Неортодоксально мыслящие биологи, такие, как Пол Вейсс и Конрад Уоддиштон8, с полным основанием критиковали такой способ приписывания индивидуальным молекулам способности порождать глобальный биологический порядок, справедливо усматривая в этом негодную попытку разобраться в сути дела, поскольку в действительности решение проблемы ошибочно подменяется ее постановкой.
Вместе с тем нельзя не признать, что технологические аналогии сами по себе представляют определенный интерес для биологии. Но неограниченная применимость таких аналогий означала бы, что между описанием молекулярного взаимодействия и описанием глобального поведения биологической системы, как и в случае, например, электронной цепи, существует принципиальная однородность: функционирование цепи может быть выведено из природы и положения ее узлов; и узлы, и цепь в целом относятся к одному масштабу, поскольку узлы были спроектированы и смонтированы тем же инженером, который разработал и построил всю цепь. В биологии такое, как правило, невозможно.
Правда, когда мы встречаем такую биологическую систему, как бактериальный хемотаксис, бывает трудно удержаться от аналогии с молекулярной машиной, состоящей из рецепторов, сенсорной, регуляторной и двигательной систем. Известно около двадцати или тридцати рецепторов, способных детектировать высокоспецифические классы соединений и заставить бактерию плыть против пространственного градиента аттрактантов (т. е. в сторону повышения концентрации) и по градиенту репеллентов. Такое «поведение» определяется сигналом на выходе системы, обрабатывающей поступающую извне информацию, т. е. положением «тумблера», отвечающего за изменение направления, в котором
движется бактерия, в положение «включено» или «выключено»13.
Но как бы ни поражали наше воображение такие случаи, ими исчерпывается далеко не все. Весьма соблазнительно рассматривать их как предельные случаи, как конечные продукты специфического типа селективной эволюции с акцептом на устойчивости и воспроизводимом поведении в противовес открытости и адаптивности. С этой точки зрения адекватность технологической метафоры - вопрос не принципа, а удобства.
Проблема биологического порядка включает в себя переход от молекулярной активности к надмолекулярному порядку в клетке. Эта проблема далека от своего решения.
Биологический порядок нередко представляют как невероятное физическое состояние, созданное и поддерживаемое ферментами напоминающими демон Максвелла: ферменты поддерживают неоднородность химического состава в системе точно так же, как демон поддерживает разность температур или давлений. Если встать на эту точку зрения, то биология окажется в том положении, которое описывал Шталь. Законы природы разрешают только смерть. Представление Шталя об организующем действии души на этот раз подменяется генетической информацией, содержащейся в нуклеиновых кислотах и проявляющейся в образовании ферментов, которые делают возможным продолжение жизни. Ферменты отодвигают наступление смерти и исчезновение жизни.
Иное значение приобретает (и приводит к иным выводам) биология, если к ней подходить с позиций физики неравновесных процессов. Как теперь известно, и биосфера в целом, и ее различные компоненты, живые или неживые, существуют в сильно неравновесных условиях. В этом смысле жизнь, заведомо укладывающаяся в рамки естественного порядка, предстает перед нами как высшее проявление происходящих в природе процессов самоорганизации.
Мы намереваемся пойти еще дальше и утверждаем, что, коль скоро условия для самоорганизации выполнены, жизнь становится столь же предсказуемой, как неустойчивость Бенара или падение свободно брошенного камня. Весьма примечательно, что недавно были открыты ископаемые формы жизни, обитавшие на Земле примерно в ту эпоху, когда происходило первое горообразование (самые древние из известных ныне ископаемых жили на Земле 3,8-109 лет; возраст Земли считается равным 4,6-109; образование скальных пород также происходило примерно 3,8-109 лет назад). Раннее зарождение жизни, несомненно, является аргументом в пользу идеи о том, что жизнь-результат спонтанной самоорганизации, происходящей при благоприятных условиях. Нельзя не признать, однако, что до количественной теории нам еще очень далеко.
Возвращаясь к нашему пониманию жизни и эволюции, следует заметить, что оно стало существенно более глубоким, и это позволяет нам избежать опасностей, с которыми сопряжена любая попытка полностью опровергнуть редукционизм. Сильно неравновесная система может быть названа организованной не потому, что в ней реализуется план, чуждый активности на элементарном уровне или выходящий за рамки первичных проявлений активности, а по противоположной причине: усиление микроскопической флуктуации, происшедшей в «нужный момент>, приводит к преимущественному выбору одного пути реакции из ряда априори одинаково возможных. Следовательно, при определенных условиях роль того или иного индивидуального режима становится решающей. Обобщая, можно утверждать, что поведение «в среднем> не может доминировать над составляющими его элементарными процессами. В сильно неравновесных условиях процессы самоорганизации соответствуют тонкому взаимодействию между случайностью и необходимостью, флуктуациямн и детерминистическими законами. Мы считаем, что вблизи бифуркаций основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями доминируют детерминистические аспекты. Займемся теперь более подробным изучением этих вопросов.
Глава 6 ПОРЯДОК ЧЕРЕЗ ФЛУКТУАЦИИ
1. Флуктуации и химия
Во введении к книге мы уже говорили о происходящем ныне концептуальном перевооружении физических наук. От детерминистических, обратимых процессов физика движется к стохастическим и необратимым процессам. Это изменение перспективы оказывает сильнейшее влияние на химию. Как мы узнали из гл. 5, химические процессы, в отличие от траекторий классической динамики, соответствуют необратимым процессам. Химические реакции приводят к производству энтропии. Между тем классическая химия продолжает опираться на детерминистическое описание химической эволюции. Как было показано в гл. 5, основным «оружием» теоретиков в химической кинетике являются дифференциальные уравнения, которым удовлетворяют концентрации веществ, участвующих в реакции. Зная эти концентрации в некоторый начальный момент времени (а также соответствующие граничные условия, если речь идет о явлениях, зависящих от пространственных переменных, например о диффузии), мы можем вычислить их в последующие моменты времени. Интересно отметить, что такой детерминистический взгляд на химию перестает соответствовать действительности, стоит лишь перейти к сильно неравновесным процессам.
Мы уже неоднократно подчеркивали роль флуктуации. Перечислим кратко наиболее характерные особенности их воздействия на систему. Когда система, эволюционируя, достигает точки бифуркации, детерминистическое описание становится непригодным. Флуктуация вынуждает систему выбрать ту ветвь, по которой будет
происходить дальнейшая эволюция системы. Переход через бифуркацию - такой же случайный процесс, как бросание монеты. Другим примером может служить химический хаос (см. гл. 5). Достигнув хаоса, мы не можем более прослеживать отдельную траекторию химической системы. Не можем мы и предсказывать детали временного развития. И в этом случае, как и в предыдущем, возможно только статистическое описание. Существование неустойчивости можно рассматривать как результат флуктуации, которая сначала была локализована в малой части системы, а затем распространилась и привела к новому макроскопическому состоянию.
Такая ситуация в корне меняет традиционное представление об отношении между микроскопическим уровнем, описываемым в терминах атомов и молекул, н макроскопическим уровнем, описываемым в терминах таких глобальных переменных, как концентрация. Во многих случаях флуктуации вносят лишь малые поправки. В качестве примера рассмотрим газ, N молекул которого заключены в сосуд объемом V. Разделим этот объем на две равные части. Чему равно число молекул X в одной из них? Здесь X-«случайная» переменная, и можно ожидать, что ее значение достаточно близко к N/2.
В случае неравновесных процессов встречается прямо противоположная ситуация. Флуктуации определяют глобальный исход эволюции системы. Вместо того чтобы оставаться малыми поправками к средним значениям, флуктуации существенно изменяют средние значения. Ранее такая ситуация нам не встречалась. Желая
подчеркнуть ее новизну, мы предлагаем назвать ситуацию, возникающую после воздействия флуктуации на систему, специальным термином-порядком через флуктуацию. Прежде чем приводить примеры порядка через флуктуацию, нам бы хотелось сделать несколько общих замечаний, чтобы подчеркнуть концептуальную новизну той ситуации, с которой мы столкнулись.
Некоторым читателям, должно быть, известны соотношения неопределенности Гейзенберга, выражающие несколько неожиданным образом вероятностный аспект квантовой теории. Возможность одновременного измерения координат и импульса в квантовой теории отпадает, тем самым нарушается и классический детерминизм. Считалось, однако, что это никак не сказывается на описании таких макроскопических объектов, как живые системы. Но роль флутуаций в сильно неравновесных системах показывает, что это не так. Случайность остается весьма существенной и на макроскопическом уровне. Интересно отметить еще одну аналогию с квантовой механикой, приписывающей волновой характер всем элементарным частицам. Как нам уже известно, сильно неравновесные химические системы также могут обладать когерентным волновым поведенем: таковы, например, рассмотренные нами в гл. 5 химические часы. И снова некоторые из особенностей квантовой механики, открытые на микроскопическом уровне, проявляются теперь н на макроскопическом уровне!
Химия активно вовлекается в концептуальное перевооружение физических наук1. По-видимому, мы находимся лишь в самом начале нового направления исследований. Результаты некоторых проведенных в последнее время расчетов наводят на мысль, что в определенных случаях понятие скорости химической реакции может быть заменено статистической теорией, использующей распределение вероятностей реакций2.
2. Флуктуации и корреляции
Вернемся еще раз к химической реакции типа, рассмотренного в гл. 5. Пусть для большей конкретности мы имеем цепь реакций A*±X*±F. Приведенные в гл. 5 кинетические уравнения относятся к средним концентрациям. Чтобы подчеркнуть это, условимся писать {Ху
вместо X. Естественно задать вопрос: какова вероятность того, что в данный момент времени концентрация вещества X имеет то или иное значение? Ясно, что эта вероятность флуктуирует, поскольку флуктуирует число столкновений между молекулами различных веществ, участвующих в реакции. Нетрудно выписать уравнение, описывающее, как изменяется распределение вероятности Р (X, t) в результате процессов рождения и уничтожения молекул X. Для равновесных или стационарных систем это распределение вероятности можно вычислить. Начнем с результатов, которые удается получить для равновесных систем.
В равновесных условиях мы, по существу, открываем заново одно из классических распределений вероятности, известное под названием распределения Пуассона. Оно описано в любом учебнике теории вероятностей, поскольку выполняется в огромном числе самых различных случаев: например, по Пуассону, распределены количество вызовов, поступающих на телефонную станцию, время ожидания в ресторане, флуктуации концентрации частиц в жидкости или газе. Математическая формула, задающая распределение Пуассона, для нас сейчас не имеет значения. Мы хотели бы лишь подчеркнуть два аспекта этого важного распределения. Во-первых, оно приводит к закону больших чисел именно в том виде, в каком он сформулирован в предыдущем разделе; следовательно, в большой системе флуктуации допустимо считать пренебрежимо малыми. Во-вторых, закон больших чисел позволяет нам вычислять корреляции между числом молекул X в двух точках пространства, находящихся на заданном расстоянии друг от друга. Как показывают вычисления, в равновесных условиях такая корреляция не существует. Вероятность одновременно найти молекулу X в точке r и молекулу X' в точке r' (отличной от точки r) равна произведению вероятности найти молекулу X в точке r и вероятности найти молекулу X' в точке r' (мы рассматриваем случай, когда расстояние между точками r и r' велико по сравнению с радиусом межмолекулярного взаимодействия).
Один из наиболее неожиданных результатов недавних исследований состоял в том, что в неравновесной области ситуация резко изменяется. Во-первых, при подходе вплотную к точкам бифуркации флуктуации становятся аномально сильными и закон больших чисел нарушается. Этого следовало ожидать, так как в сильно неравновесной области система при прохождении точек бифуркации «выбирает» один из различных возможных режимов. Амплитуды флуктуации имеют такой же порядок величины, как и средние макроскопические значения. Следовательно, различие между флуктуациями и средними значениями стирается. Кроме того, в случае нелинейных химических реакций того типа, который мы рассматривали в гл. 5, появляются дальнодействующие корреляции. Частицы, находящиеся на макроскопических расстояниях друг от друга, перестают быть независимыми. «Отзвуки» локальных событий разносятся по всей системе. Интересно отметить3, что такие дальнодействующие корреляции появляются в самой точке перехода от равновесного состояния к неравновесному. В этом смысле потеря устойчивости равновесным состоянием напоминает фазовый переход, с той лишь особенностью, что амплитуды дальнодействующих корреляций сначала малы, а затем по мере удаления от равновесного состояния нарастают и в точках бифуркаций могут обращаться в бесконечность.
Мы считаем, что такой тип поведения представляет особый интерес, поскольку позволяет подвести «молекулярную основу» под обсуждавшуюся ранее при рассмотрении химических часов проблему связи между частицами. Дальнодействующие корреляции организуют систему еще до того, как происходит макроскопическая бифуркация. Мы снова возвращаемся к одной из главных идей нашей книги: к неравновесности как источнику порядка. В данном случае ситуация особенно ясна. В равновесном состоянии молекулы ведут себя независимо: каждая из них игнорирует остальные. Такие независимые частицы можно было бы назвать гипнонами («сомнамбулами»). Каждая из них может быть сколь угодно сложной, но при этом «не замечать» присутствия остальных молекул. Переход в неравновесное состояние пробуждает гипноны и устанавливает когерентность, совершенно чуждую нх поведению в равновесных условиях. Аналогичную картину рисует и микроскопическая теория неравновесных процессов, с которой мы познакомимся в гл. 9.
Активность материи связана с неравновесными условиями, порождаемыми самой материей. Так же как и
в макроскопическом поведении, законы флуктуации и корреляций в равновесных условиях (когда мы обнаруживаем распределение Пуассона) носят универсальный характер. При переходе границы, отделяющей равновесную область от неравновесной, они утрачивают универсальность и обретают сильнейшую зависимость от типа нелинейности системы.
3. Усиление флуктуации
Рассмотрим сначала два примера, на которых во всех подробностях можно проследить за ростом флуктуации, предшествующим образованию новой структуры. Первый пример - образование колонии коллективных амеб, стягивающихся при угрозе голода в единую многоклеточную массу. В гл. 5 мы уже упоминали об этом ярком примере самоорганизации. Другой иллюстрацией роли флуктуации может служить первая стадия постройки гнезда термитами. Она была впервые описана Грассе, а Денюбург исследовал ее с интересующей нас точки зрения4.
В других экспериментах исследовалась возможность образования, скопления личинок из «ядра», искусственно созданного на периферии системы. В зависимости от числа личинок в начальном ядре возникают различные ситуации (рис. С).
Если число личинок в ядре мало по сравнению с общим числом личинок, то скопление не образовывалось (рнс. D) Если же число личинок в ядре велико, то скопление растет (рис. Е). При среднем
Постройка гнезда (термитника) термитами - одна из тех когерентных активностей, которые дали некоторым ученым повод для умозрительных утверждений о «коллективном разуме» в сообществах насекомых. Проявляется этот «коллективный разум» довольно необычным способом: для участия в постройке такого огромного и сложного сооружения, как термитник, термитам
необходимо очень мало информации. Первая стадия строительной активности (закладка основаиия), как показал Грассе, является результатом внешне беспорядочного поведения термитов. На этой стадии они приносят и беспорядочно разбрасывают комочки земли, по каждый комочек пропитывают гормоном, привлекающим других термитов. Ситуацию можно представить следующим образом: начальной «флуктуацией» является несколько большая концентрация комочков земли, которая рано или поздно возникнет в какой-то точке области обитания термитов. Возросшая плотность термитов в -окрестности этой точки, привлеченных несколько большей концентрацией гормона, приводит к нарастанию флуктуации. Поскольку число термитов в окрестности точки увеличивается, постольку вероятность сбрасывания ими комочков земли в этой окрестности возрастает, что в свою очередь приводит к увеличению концентрации гормона-аттрактанта. Так воздвигаются «опоры». Расстояние между ними определяется радиусом распрохранения гормона. Недавно были описаны и другие аналогичные примеры.
Хотя принцип порядка Больцмана позволяет описывать химические или биологические процессы, в которых неоднородности выравниваются, а начальные условия забываются, он не может объяснить ситуации, подобные -только что описанным, где несколько «решений», принятых в условиях потери устойчивости, могут направить развитие системы, состоящей из большого числа взаимодействующих единиц, к некоторой глобальной структуре.
Когда новая структура возникает в результате конечного возмущения, флуктуация, приводящая к смене режимов, не может сразу «одолеть» начальное состояние. Юна должна сначала установиться в некоторой конечной области и лишь затем распространиться и «заполнить» все пространство. Иначе говоря, существует механизм нуклеации. В зависимости от того, лежат ли размеры начальной области флуктуации ниже или выше критического значения (в случае химических диссипативных структур этот порог зависит, в частности, от кинетических констант и коэффициента диффузии), флуктуация либо затухает, либо распространяется на всю систему. Явления нуклеации хорошо известны из классической теории фазового перехода: например, в газе непрестанно образуются и затем испаряются капельки коидеисата. Когда же температура и давление достигают точки, в которой становится устойчивым жидкое состояние, может образоваться капля критических размеров (тем меньших, чем ниже температура и чем выше давление). Если размеры капл превышают порог нуклеации, газ почти мгновенно превращается в жидкость.
Как показывают теоретические исследования и численное моделирование, критические размеры ядра возрастают с эффективностью механизмов диффузии, связывающих между собой все области системы. Иначе говоря, чем быстрее передается сигнал по «каиалам связи» внутри системы, тем выше процент безрезультатных флуктуации и, следовательно, тем устойчивее система. Этот аспект проблемы критического размера означает, что в подобных ситуациях «внешний мир», т. е. все, что окружает флуктуирующую область, всегда стремится (погасить флуктуации. Затухнут ли флуктуации или усилятся, зависит от эффективности «канала связи» между
флуктуирующей областью и внешним миром. Таким образом, критические размеры определяются конкуренцией между «интегративной силой» системы и химическими механизмами, приводящими к усилению флуктуации.
Описанная нами модель применима, в частности, к результатам, полученным в последнее время in vitro при экспериментальных исследованиях зарождения раковых опухолей5. В этих исследованиях отдельная раковая клетка рассматривается как флуктуация, способна» спонтанно и непрестанно появляться и размножаться, посредством репликации. Возникнув, раковая клетка, сталкивается с популяцией цитотоксических клеток и либо погибает, либо выживает. В зависимости от значений различных параметров, характеризующих процессы репликации и гибели раковых клеток, мы можем предсказывать либо регресс, либо разрастание опухоли. Такого рода кинетические исследования привели к открытию неожиданных свойств взаимодействия цитотоксических клеток и опухоли: было установлено, что цитотоксические клетки могут принимать мертвые опухолевые, клетки за живые. Такие ошибки существенно затрудняют разрушение опухоли.
Вопрос о пределах сложности системы поднимался довольно часто. Действительно, чем сложнее система, тем более многочисленны типы флутуаций, угрожающих
ее устойчивости. Позволительно, однако, спросить, как же в таком случае существуют такие сложные системы, какими является экологическая или социальная структура человеческого общества? Каким образом им удается избежать перманентного хаоса? Частичным ответом на подобные вопросы может быть ссылка на стабилизирующее влияние связи между частями систем, процессов диффузии. В сложных системах, где отдельные виды растений, животных и индивиды вступают между собой в многочисленные и разнообразные взаимодействия, связь между различными частями системы не может не быть достаточно эффективной. Между устойчивостью, обеспечиваемой связью, и неустойчивостью из-за флуктуации имеется конкуренция. От исхода этой конкуренции зависит порог устойчивости.
4. Структурная устойчивость
В каких случаях мы начинаем говорить об эволюции в ее собственном смысле? Как известно, диссипативные структуры требуют сильно неравновесных условий. Тем не менее уравнения реакций с диффузией содержат параметры, допускающие сдвиг в слабо неравновесную область. На бифуркационной диаграмме система может эволюционировать и приближаясь к равновесию, и удаляясь от него, подобно тому как жидкость может переходить от ламинарного течения к турбулентному и возвращаться к ламинарному. Сколько-нибудь жесткой и определенной схемы эволюции не существует.
С совершенно иной ситуацией мы встречаемся в моделях, в которых размеры системы входят в качестве параметра бифуркации: рост, происходящий необратимо во времени, приводит к необратимой эволюции. Однако такой тип развития является достаточно узким частным случаем, хотя вполне возможно, что он имеет некоторое отношение к морфогенетическому развитию.
Ни в биологической, ни в экологической или социальной эволюции мы не можем считать заданным определенное множество взаимодействующих единиц или определенное множество преобразований этих единиц. Это означает, что определеиие системы необходимо модифицировать в ходе эволюции. Простейший из примеров такого рода эволюции связан с понятием структурной
устойчивости. Речь идет о реакции заданной системы на введение новых единиц, способных размножаться и вовлекать во взаимодействие различные процессы, протекающие в системе.
Проблема устойчивости системы относительно изменений такого типа сводится к следующему. Вводимые в небольшом количестве в систему новые составляющие приводят к возникновению новой сети реакций между ее компонентами. Новая сеть реакций начинает конкурировать со старым способом функционирования системы. Если система структурно устойчива относительно вторжения новых единиц, то новый режим функционирования не устанавливается, а сами новые единицы» («иниоваторы») погибают. Но если структурные флуктуации успешно «приживаются» (например, если новые-единицы размножаются достаточно быстро и успевают «захватить» систему до того, как погибнут), то вся система перестраивается на новый режим функционирования: ее активность подчиняется новому «синтаксису».
Простейшим примером такого рода может служить популяция макромолекул, образующихся в результате полимеризации внутри системы, в которую поступают мономеры А и В. Предположим, что процесс полимеризации автокаталитический, т. е. синтезированный полимер используется в качестве образца для образования цепи с той же последовательностью структурных единиц. Такого рода синтез протекает гораздо быстрее, чем синтез в отсутствие образца для копирования. Каждый тип полимеров, отличающийся от других последовательностью расположения в цепи молекул А и В, может быть описан набором параметров, задающих скорость катализируемого синтеза копии, точность процесса копирования и среднее время жизни самой макромолекулы. Можно показать, что при определенных условиях в популяции доминирует полимер какого-то одного типа, например АВАВАВА..., а остальные полимеры могут рассматриваться как «флуктуации» относительно него. Возникающая всякий раз проблема структурной устойчивости обусловлена тем, что в результате «ошибки» при копировании эталонного образца в системе возникает полимер нового типа, характеризуемый ранее не встречавшейся последовательностью мономеров А и В и новым набором параметров, который начинает размножаться, конкурируя с доминантными видами за обладание мономерами А л В. Перед иами простейший вариант классической дарвиновской идеи о «выживании наиболее приспособленного».
Аналогичные идеи положены в основу модели предбиотической эволюции, разработанной Эйгеном и его сотрудниками. Подробности теории Эйгена можно найти в многочисленных статьях и книжных публикациях7, поэтому мы ограничимся лишь изложением самой сути. Эйген и его сотрудники показали, что только система одного типа обладает способностью сопротивляться «ошибкам», постоянно совершаемым автокаталитическими популяциями, - а именно полимерная система, структурно устойчивая относительно появления любого лолимера-«мутанта». Такая система состоит из двух множеств полимерных молекул. Молекулы первого множества выполняют функцию «нуклеиновых кислот». Каждая молекула обладает способностью к самовоспроизведению и действует как катализатор при синтезе молекул второго множества, выполяющих функцию «протеинов». Каждая молекула второго множества катализирует самовоспроизведение молекул первого множества. Такая кросс-каталитическая связь между молекулами двух множеств может превращаться в цикл (каждая «нуклеиновая кислота» воспроизводит себя с помощью «протеина»). Этот цикл обеспечивает устойчивое выживание «нуклеиновых кислот» и «протеинов», защищенных от постоянно возникающих с высоким коэффициентом воспроизводства новых полимеров: ничто не может вмешиваться в самовоспроизводящийся цикл, образуемый «нуклеиновыми кислотами» и «протеинами». Таким образом, эволюция нового типа начинает расти на прочном фундаменте, предвосхищающем появление хеиетического кода.
Подход, предложенный Эйгеном, несомненно, представляет большой интерес. В среде с ограниченным запасом питательных веществ дарвиновский отбор имеет важное значение для точного самовоспроизведения. Но нам хотелось бы думать, что это не единственный аспект предбиотической эволюции. Не менее важное значение имеют сильно неравновесные условия, связанные с критическими, пороговыми значениями потоков энергии и вещества. По-видимому, разумно предположить, что некоторые из первых стадий эволюции к жизни были связаны с возиикиовением механизмов, способных поглощать и трансформировать химическую энергию, как бы выталкивая систему в сильно неравновесные условия. На этой стадии жизнь, или «преджизнь», была редким событием и дарвиновский отбор не играл такой существенной роли, как на более поздних стадиях.
В нашей книге отношению между микроскопическим я макроскопическим уделяется немало внимания. Одной из наиболее важных проблем в эволюционной теории является возникающая в итоге обратная связь между макроскопическими структурами и микроскопическими событиями: макроскопические структуры, возникая из микроскопических событий, должны были бы в свою очередь приводить к изменениям в микроскопических механизмах. Как ни странно, но в настоящее время наиболее понятные случаи относятся к ситуациям, возникающим в человеческом обществе. Когда мы прокладываем дорогу или строим мост, мы можем предсказать, как это скажется на поведении окрестного населения, а оно в свою очередь определяет изменения в характере и способах связи внутри региона. Такие взаимосвязанные процессы порождают очень сложные ситуации, и это обстоятельство необходимо сознавать, приступая к их моделированию. Именно поэтому мы ограничимся описанием лишь четырех наиболее простых случаев.
5. Логистическая эволюция
Понятие структурной устойчивости находит широкое применение в социальных проблемах. Следует, однако, подчеркнуть, что всякий раз речь идет о сильном упрощении реальной ситуации, описываемой в терминах конкуренции между процессами саморепликации в среде с ограниченными пищевыми ресурсами.
В экологии классическое уравнение, описывающее такую проблему, называется логистическим уравнением. Оно описывает, как эволюционирует популяция из N особей с учетом рождаемости, смертности и количества ресурсов, доступных популяции. Логистическое уравнение можно представить в виде dN/dt-rN(K-N)-mN, где г и m - характерные постоянные рождаемости и смертности, К - «несущая способность» окружающей среды. При любом начальном значении N система со временем выходит на стационарное значение N=K-m/r, зависящее от разности между несущей способностью среды и отношением постоянных смертности и рождаемости. При достижении этого стационарного значения наступает насыщение: в каждый момент времени рождается столько индивидов, сколько их погибает.
Кажущаяся простота логистического уравнения до некоторой степени скрывает сложность механизмов, участвующих в процессе. Мы уже упоминали о внешнем шуме. В случае логистического уравнения он имеет особенно простой смысл. Ясно, что при учете одних лишь климатических флуктуации коэффициенты К, т и r нельзя считать постоянными: как хорошо известно, такие флуктуации могут разрушить экологическое равновесие и даже обречь популяцию на полное вымирание. Разумеется, в системе начинаются новые процессы, такие, как создание запасов пищи и образование новых колоний, которые заходят в своем развитии настолько далеко, что позволяют в какой-то мере избежать воздействия внешних флуктуации.
Есть в логистической модели и другие тонкости. Вместо того чтобы записывать логистическое уравнение в непрерывном времени, будем сравнивать состояние популяции через заданные интервалы времени (с интервалом, например, в год). Такое дискретное логистическое уравнение представимо в виде Nt+i = Nt(1+r [1-NtlK), где N; и Nt+i - популяции с интервалом в один год (членом, учитывающим смертность, мы пренебрегаем). Р. Мэй8 обратил внимание на одну замечательную особенность таких уравнений: несмотря на их простоту, они допускают необычайно много решений. При значениях параметра 0<r<2 в дискретном случае так же, как и в непрерывном, наблюдается монотонное приближение к равновесию. При значениях параметра 2<г<2,444 возникает предельный цикл: наблюдается периодический режим с двухлетним периодом. При еще больших значениях параметра r возникают четырех-, восьмилетние и т. д. циклы, пока периодические режимы не переходят (при значениях r больше 2,57) в режим, который может быть назван только хаотическим. Мы имеем здесь дело с переходом к хаосу, описанным в гл. 5, - через серию бифуркаций удвоения периода. Возникает ли такой хаос в природе? Как показывают последние исследования9, параметры, характеризующие реальные популяции в природе, не позволяют им достигать хаотической области. Почему? Перед нами одна из интереснейших проблем, возникающих при попытке решения эволюционных проблем математическими методами с помощью численного моделирования на современных компьютерах.
До сих пор мы рассматривали все со статической точки зрения. Обратимся теперь к механизмам, позволяющим варьировать параметры К, r и т в ходе биологической или экологической эволюции.
Следует ожидать, что в процессе эволюции значения экологических параметров К, r и т будут изменяться (так же как и многих других параметров и переменных независимо от того, допускают ли они квантификацию или не допускают). Живые сообщества непрестанно изыскивают новые способы эксплуатации существующих ресурсов или открытия новых (увеличивая тем самым значение параметра К), продления жизни или более быстрого размножения. Каждое экологическое равновесие, определяемое логистическим уравнением, носит лишь временный характер, и логистически заданная экологическая ниша последовательно заполняется серией видов, каждый из которых вытесняет предшествующие, когда его «способность» к использованию ниши, измеряемая величиной К-т/r, становится больше, чем у них. Таким образом, логистическое уравнение описывает весьма простую ситуацию, позволяющую количественно сформулировать дарвиновскую идею о выживании «наиболее приспособленного»: наиболее приспособленным считается тот вид, у которого в данный момент времени величина К-т/r больше.
Сколь ни ограниченна задача, описываемая логистическим уравнением, однако и она приводит к некоторым поистине замечательным примерам изобретательности природы.
Возьмем хотя бы гусениц, которые должны оставаться незамеченными, поскольку они движутся слишком медленно, чтобы успеть скрыться от врага.
Выработанные в процессе эволюции стратегии, включающие использование ядов, едких веществ, раздражающих волосков и игл, оказываются высокоэффективными при отпугивании птиц и других потенциальных хищников. Но ни одна из этих стратегий не обладает универсальной эффективностью, способной надежно защитить гусеницу от любого хищника в любое время, в особенности если хищник голоден. Идеальная стратегия состоит в том, чтобы быть как можно более незаметной. Некоторые гусеницы близки к этому идеалу, а при виде разнообразия и изощренности стратегий, используемых сотнями видов чешуекрылых, чтобы остаться иезамеченными, невольно вспоминаются слова выдающегося натуралиста XIX в. Жан Луи Агассиса: «Экстравагантность настолько глубоко отражает самую возможность существования, что вряд ли найдется какая-нибудь концепция, которую Природа не реализовала бы как слишком экстраординарную»10.
Мы не можем удержаться от искушения привести пример, заимствованный у Милтопа Лава". Трематод (плоский червь), паразитирующий в печени овцы, проходит путь от муравья до овцы, где наконец происходит самовоспроизведение. Вероятность того, что овца проглотит инфицированного муравья, сама по себе очень мала, но поведение такого муравья изменяется самым удивительным образом, и вероятность, по-прежнему оставаясь малой, становится максимальной. Можно с полным основанием сказать, что трематод «завладевает» телом своего хозяина. Он проникает в мозг муравья и вынуждает свою жертву вести себя самоубийственным образом: порабощенный муравей вместо того, чтобы остаться на земле, взбирается по стеблю растения и, замерев на самом кончике листа, поджидает овцу. Это - поистине «остроумное» решение проблемы для паразита. Остается загадкой, как оно было отобрано.
Модели, аналогичные логистическому уравнению, позволяют исследовать и другие ситуации, возникающие в ходе биологической эволюции. Например, такие модели помогают определить условия межвидовой конкуренции, при которой определенной части популяции выгодно специализироваться на «военной», непроизводительной деятельности (таковы, например, «солдаты» у общественных насекомых). Можно также указать, в какой среде специализированный вид с ограниченным диапазоном пищевых ресурсов имеет более высокую вероятность выжить, чем неспециализированный вид, потребляющий более разнообразные пищевые ресурсы12. Но здесь мы сталкиваемся с некоторыми весьма различными проблемами организации внутреине дифференцированных популяций. Во избежание путаницы и недоразумений необходимо установить четкие «демаркационные линии». В популяциях, где отдельные особи различимы, где каждая особь наделена памятью, обладает своим характером и опытом и призвана играть свою особую роль, применимость логистического уравнения или, более общо, простого аналога дарвиновских идей становится весьма относительной. В дальнейшем мы еще вернемся к этой проблеме.
Интересно отметить, что кривая на рис. 21, показывающая, как последовательно сменяются при увеличении параметра К-т/r периоды роста и пики семейства решений логистического уравнения, может также описывать размножение некоторых технологических процедур или продуктов. Открытие или технологическое новшество, появление нового продукта нарушает сложившееся социальное, технологическое или экономическое равновесие. Такое равновесие соответствует максимуму кривой роста техники или продуктов производства, с которыми новшеству приходится вступать в конкуренцию (в ситуации, описываемой логистическим уравнением, они играют аналогичную роль13). Приведем лишь один пример. Распространение пароходов привело не только к почти полному исчезновению парусного флота, но и за счет снижения транспортных расходов и повышения скорости перевозок способствовало увеличению спроса на морской транспорт (т. е. увеличению параметра К), что в свою очередь повлекло за собой увеличение численности транспортных судов. Разумеется, ситуация, о которой мы говорим здесь, предельно упрощена и, по предположению, подчиняется чисто экономической логике: технологическое новшество в данном случае лишь удовлетворяет (хотя и иным путем) ранее существовавшую потребность, которая остается неизменной. Но в экологии и человеческом обществе имеется немало примеров инноваций, оказавшихся успешными, несмотря на отсутствие предварительной «ниши».
6. Эволюционная обратная связь
Мы сделаем первый шаг к объяснению эволюционной обратной связи, если будем считать «несущую способность» системы не постоянной, как это было до сих пор, а функцией того, как используется система.
Такое расширение модели позволит нам учесть некоторые дополнительные аспекты экономической деятельности, и в частности некоторые «эффекты усиления». Например, мы получаем возможность описать самоускоряющиеся свойства системы и пространственную дифференциацию различных уровней активности.
Географы уже построили модель, коррелирующую этн процессы. Мы имеем в виду модель Кристаллера, определяющую оптимальное пространственное распределение центров экономической деятельности. Крупные городские центры располагаются в узлах шестиугольной решетки. Каждый из центров окружен кольцом городов следующего по величине масштаба, те в свою очередь окружены тяготеющими к ним еще меньшими населенными пунктами и т. д. Ясно, что в действительности такое геометрически правильное строго иерархическое распределение встречается очень редко: немало исторических, политических и географических факторов нарушают пространственную симметрию. Но рассматриваемая модель нереалистична и по другим причинам. Даже если бы мы исключили все наиболее важные источники асимметричного развития н начали с однородного в экономическом и географическом отношениях пространства, моделирование генезиса распределения, по Кристаллеру, приводит к выводу о том, что описываемая моделью статическая оптимизация является возможным, но маловероятным исходом эволюции.
Рассматриваемая модель14 использует лишь минимальный набор переменных, входящих в вычисления, аналогичные проведенным Кристаллером. Построено несколько уравнений, обобщающих логистическое. При выводе их авторы исходят из осиовиого предположения о том, что способность населения мигрировать есть функция локальных уровней экономической активности, определяющих своего рода локальную «несущую способность», которая в данном случае сводится к занятости населения. Но местное население есть в то же время1 потенциальный потребитель товаров, производимых местной промышленностью. Таким образом, в локальном развитии существует двойная положительная обратная связь, называемая «городским мультипликатором»: и локальное население, и экономическая структура, сложившаяся при уже достигнутом уровне активности, способствуют дальнейшему его повышению. Вместе с тем каждый локальный уровень активности определяется конкуренцией с аналогичными центрами экономической активности, расположенными в других местах. Сбыт произведенных продуктов или оказываемых услуг зависит от стоимости транспортировки их к потребителю и масштабов «предприятия». Расширение любых предприятии определяется спросом на то (товар или услугу), производству чего оно способствует и за производство чего данные предприятия конкурируют с другими. Таким образом, между относительным ростом населения и производительной деятельностью или сферой услуг существуют сильная обратная связь и нелинейные зависимости.
За исходное состояние в рассматриваемой модели приняты гипотетические начальные условия, при которых в различных точках наблюдается (сельскохозяйственная) активность «уровня 1». Модель позволяет проследить возникновение иерархически упорядоченной активности, соответствующей более высоким уровням иерархии по Кристаллеру, т. е. подразумевающей экспорт произведенной продукции в более широкую область. Модель показывает, что даже если начальное состояние совершенно однородно, то одной лишь игры случайных (т. е. не контролируемых моделью) факторов, таких, как место и время закладки различных предприятий, достаточно для нарушения симметрии - появления зон с высокой концентрацией активности и одновременным спадом экономической активности в других областях и оттоком из иих населения. Проигрывание модели на ЭВМ позволяет наблюдать расцвет и упадок, подчинение одного экономического центра другому и соответственно доминирование одних центров над другими, периоды, благоприятные для развития альтернативных направлений, и сменяющие их периоды «замораживания» уже существующих структур.
В то время как симметричное распределение Кристаллера игнорирует «историю», изложенный выше сценарий учитывает ее (по крайней мере самым минимальным образом) как взаимодействие «законов», имеющих в данном случае чисто экономическую природу, и «случая», управляющего последовательностью, в которой возникают предприятия.
7. Моделирование сложности
Несмотря на свою простоту, наша модель довольно точно передает некоторые особенности эволюции сложных систем. В частности, она проливает свет на природу трудностей «управления» развитием, зависящим от
большого числа взаимодействующих элементов. Каждое отдельное действие или локальное вмешательство в систему обретает коллективный аспект, который может повлечь за собой совершенно неожиданные глобальные изменения. Как подчеркивал Уоддингтон, в настоящее время мы еще мало знаем о наиболее вероятной реакции системы на то или иное изменение. Очень часто отклик системы на возмущение оказывается противоположным тому, что подсказывает нам наша интуиция. Наше состояние обманутых ожиданий в этой ситуации хорошо отражает введенный в Массачусетском технологическом институте термин «контринтуитивный»: «Эта проклятая штука ведет себя не так, как должна была бы вести!» В подтверждение сошлемся на классический пример, приведенный Уоддингтоном: программа ликвидации трущоб вместо того, чтобы улучшить, еще более ухудшает ситуацию. Новые здания, построенные на месте снесенных, привлекают в район большее число людей, но если их занятость не обеспечивается, то они продолжают оставаться бедными, а их жилища становятся еще более перенаселенными16. Мы приучены мыслить в терминах линейной причинности, но теперь нуждаемся в новых «средствах мышления». Одно из величайших преимуществ рассмотреииой модели состоит как раз в том, что она позволяет нам находить такие средства и разрабатывать способы их оптимального использования.
Как мы уже отмечали, логистические уравнения наиболее пригодны, когда критическим измерением является рост популяции, будь то популяция животных, совокупность их навыков или активностей. Логистическая модель исходит из предположения о том, что каждый член популяции может быть выбран и рассматриваться как эквивалент любого другого члена. Но эту общую эквивалентность надлежит рассматривать не как незыблемый факт, а лишь как приближение, достоверность которого зависит от связей, наложенных на популяцию, от оказываемого на нее давления и от стратегии, избираемой популяцией для того, чтобы противодействовать вмешательству извне.
Взять хотя бы различие, проводимое экологами между К-стратегиями и r-стратегиями (К и r - параметры, входящие в логистическое уравнение). Хотя это различие относительно, оно проявляется особенно отчетливо в дивергенции, обусловленной систематическим взаимодействием между двумя популяциями, в частности взаимодействием хищник - жертва. Типичной для популяции жертв эволюцией является увеличение рождаемости r, а для популяции хищников - совершенствование способов ловли жертв, т. е. увеличение коэффициента К. Но повышение К в рамках логистической модели влечет за собой последствия, выходящие за круг явлений, описываемых логистическими уравнениями.
Как заметил Стивен Дж. Гулд16, K-стратегия подразумевает, что индивид все более повышает свою способность обучаться на опыте и хранить накопленную информацию в памяти. Иначе говоря, индивиды становятся все более сложными и со все более долгим периодом созревания и обучения. В свою очередь это означает, что индивиды становятся все более «ценными», представляющими более крупные вложения «биологического капитала» и уязвимыми на протяжении более продолжительного периода. Развитие «социальных» и «семейных» связей является, таким образом, логическим аналогом K-стратегии. С этой точки зрения другие факторы, помимо численности индивидов в популяции, становятся все более существенными, и логистическое уравнение, измеряющее успех по числу индивидов, все хуже отражает истинное положение дел. Перед нами достаточно наглядный пример, показывающий, почему к моделированию сложных явлений следует относиться с осторожностью: в сложных системах дефиниция самих сущностей и взаимодействия между ними в процессе эволюции могут претерпевать изменения. Не только каждое состояние системы, но и само определение системы в том виде, в каком ее описывает модель, обычно нестабильно или по крайней мере метастабильно.
Мы подходим к проблемам, в которых методология неотделима от вопроса о природе исследуемого объекта. Мы не можем задавать одни и те же вопросы относительно популяции мушек, рождающихся и погибающих миллионами без сколько-нибудь заметных признаков обучения на опыте или расширения опыта, и относительно популяции приматов, каждый член которой является как бы тончайшим переплетением собственного опыта и традиций популяции.
Нетрудно видеть, что и в самой антропологии необходим принципиальный выбор между различными подходами к коллективным явлениям. Хорошо известно, например, что структурная антропология отдает предпочтение тем аспектам общества, к которым применимы средства и методы логики и конечной математики, а именно: к элементарным структурам родства или анализу мифов, трансформации которых нередко сравнимы с ростом кристаллов. Дискретные элементы подсчитываются и комбинируются. Такой комбинаторный подход в корне отличается) от подходов, анализирующих эволюцию в терминах процессов, которые охватывают большие, частично хаотические популяции. Мы имеем здесь дело с двумя различными взглядами и двумя типами моделей: Леви-Строс называет их соответственно механической и статистической моделями. В механической модели «элементы того же масштаба, что и явления», а индивидуальное поведение основано на предписаниях, относящихся к структурной организации общества. Антрополог выявляет логику этого поведения, а социолог со своей стороны работает со статистическими моделями больших популяций и определяет средние и пороги17.
Общество, определяемое исключительно в терминах функциональной модели, соответствовало бы аристотелевской идее о естественной иерархии и естественном порядке. Каждое официальное лицо исполняло бы все то, что входит в круг его обязанностей. Эти обязанности осуществляют перевод различных аспектов организации общества как целого с одного уровня на другой. Король отдает приказы архитектору, архитектор - подрядчику, подрядчик - строительным рабочим. На каждом уровне имеется свой руководитель. В то же время поведеине термитов и других общественных насекомых ближе к статистической модели. Как мы уже видели, при возведении своего «дома» термиты не следуют указаниям одного руководящего разума. Взаимодействие между индивидами порождает при некоторых условиях определенные типы коллективного поведения, но ни одно из этих взаимодействий не соотносится с глобальной задачей, все взаимодействия чисто локальны. Такое описание подразумевает обращение к средним и вновь поднимает вопрос относительно устойчивости и бифуркаций.
Какие события способствуют регрессу и какие прогрессу системы? В каких ситуациях перед системой возникает необходимость выбора и в каких ситуациях режимы стабильны? Поскольку размеры или плотность системы могут играть роль параметра бифуркации, как может чисто количественный рост приводить к качественно новому выбору? Для ответа на эти вопросы понадобилась бы обширная исследовательская программа. Как и в случае с r- и K-стратегиями, поставленные нами вопросы приводят к обоснованию выбора «хорошей» модели социального поведения и истории. Каким образом в ходе эволюции популяция становится все более «механической»? Параллелизм между этим вопросом и теми вопросами, с которыми мы уже сталкивались при рассмотрении биологических проблем, очевиден. Например, каким образом отбор генетической информации, управляющей скоростями и регулированием метаболических реакций, делает одни пути настолько наиболее предпочтительными, чем другие, что развитие кажется целенаправленным или напоминает передачу «сигнала»?
Мы полагаем, что модели, построенные на основе понятия «порядок через флуктуации», помогут нам справиться с подобными вопросами, а при определенных обстоятельствах будут способствовать более точной формулировке сложного взаимодействия между индивидуальным и коллективным аспектами поведения. С точки зрения физика, к этому кругу проблем относится проведение различия, с одной стороны, между состояниями системы, в которых всякая индивидуальная инициатива малозначима, а с другой стороны, между областями бифуркации, в которых индивидуальная идея или даже новое поведение может порождать глобальное состояние. Но даже в областях бифуркации усиление - удел далеко не каждой индивидуальной идеи и не каждого индивидуального поведения, а лишь «опасных», т. е. способных обратить себе на пользу нелинейные соотношения, обеспечивавшие устойчивость предыдущего режима. Таким образом, одни и те же нелинейности могут порождать порядок из хаоса элементарных процессов, а при других обстоятельствах приводить к разрушению того же порядка и в конечном счете к возникновению новой когерентности, лежащей уже за другой бифуркацией.
Модели «порядка через флуктуации» открывают перед нами неустойчивый мир, в котором малые причины порождают большие следствия, но мир этот не произволен. Напротив, причины усиления малых событий -
вполне «законный» предмет рационального анализа. Флуктуации не вызывают преобразования активности системы. Если воспользоваться образным сравнением Максвелла, можно сказать, что спичка может стать причиной лесного пожара, но одно лишь упоминание о спичке еше не позволяет понять, что такое огонь. Кроме того, если флуктуация становится неуправляемой, это еще не означает, что мы не можем локализовать причины неустойчивости, вызванной усилением флуктуации.
8, Открытый мир
Ввиду сложности затронутых нами вопросов мы вряд ли вправе умолчать о том, что традиционная интерпретация биологической и социальной эволюции весьма неудачно использует понятия и методы, заимствованные из физики, - неудачно потому, что они применимы в весьма узкой области физики и аналогия между ними и социальными или экономическими явлениями лишена всякого основания. .
Первый пример тому - парадигма оптимизации. И управление человеческим обществом, и действие селективных «воздействий» на систему направлены на оптимизацию тех или иных аспектов поведения или способов связи, но было бы опрометчиво видеть в оптимизаций ключ к пониманию того, как выживают популяции и индивиды. Те, кто так думает, рискуют впасть в ошибку, принимая причины за следствия, и наоборот.
Модели оптимизации игнорируют и возможность радикальных преобразований (т. е. преобразований, меняющих самую постановку проблемы и тем самым характер решения, которое требуется найти), и инерциальные связи, которые в конечном счете могут вынудить систему перейти в режим функционирования, ведущий к ее гибели. Подобно доктринам, аналогичным «невидимой направляющей руке» Адама Смита, или другим определениям прогресса в терминах критериев максимизации или минимизации, модели оптимизации рисуют утешительную картину природы как всемогущего и рационального калькулятора, а также строго упорядоченной истории, свидетельствующей о всеобщем неукоснительном прогрессе. Для того чтобы восстановить н инерцию, и возможность неожиданных событий, т. е. восстановить открытый характер истории, необходимо признать ее фуидаментальную иеопределенность. В качестве символа мы могли бы использовать явно случайный характер массовой гибели в меловой период живых существ, исчезновение которых с лица Земли расчистило путь для развития млекопитающих - небольшой группы крысообразных животных19.
Сказанное выше было лишь общим изложением, своего рода «видом с птичьего полета». Мы обошли молчанием многие важные вопросы (например, большой теоретический и практический интерес представляют неустойчивости, возникающие в пламенах, плазме и лазерах в сильно неравновесных условиях). Всюду, куда бы мы ни бросили свой взгляд, нас окружает природа, неисчерпаемо разнообразная и щедрая на всякого рода новаторские решения. Описываемая нами концептуальная эволюция сама по себе является лишь составной частью более широкой истории последовательного, шаг за шагом переоткрытия времени.
Мы видели, как физика постепенно обогащалась все новыми и новыми аспектами времени, между тем как присущие классической физике претензии на всемогущество одна за другой отпадали как необоснованные. В этой главе мы шли от физики через биологию и экологию к человеческому обществу, хотя могли бы двигаться н в обратном направлении: история занималась изучением в основном человеческих сообществ и лишь затем распространила свое внимание на временные аспекты жизни и геологии. Таким образом, вхождение времени в физику явилось заключительным этапом все более широкого «восстановления прав» истории в естественных и социальных науках.
Интересно отметить, что на каждом этапе этого процесса наиболее важной отличительной особенностью «историизации» было открытие какой-нибудь временной неоднородности. Начиная с эпохи Возрождения западное общество вступало в контакт со многими цивилизациями, находившимися на различных этапах развития; в XIX в. биология и геология открыли и класифицировали ископаемые формы жизни и научились распознавать в ландшафтах сохранившиеся до нашего времени памятники прошлого; наконец, физика XX в. также открыла своего рода «ископаемое» - реликтовое излучение, поведавшее нам о «первых минутах» Вселенной.
Ныне мы твердо знаем, что живем в мире, где сосуществуют в неразрывной связи различные времена и ископаемые различных эпох.
Теперь перед нами возникает новый вопрос. Мы уже говорили о том, что жизнь стала казаться столь же «естественной, как свободно падающее тело». Что общего между естественным процессом самоорганизации и свободно падающим телом? Какая связь может существовать между динамикой, наукой о силах и траекториях, и наукой о сложности и становлении, наукой о жизненных процессах и о естественной эволюции, частью которой они являются? В конце XIX в. необратимость связывали с трением, вязкостью и теплопроводностью. Необратимость была первопричиной потерь и непроизводительных расходов энергии. Тогда, к началу XIX в., необратимость еще можно было приписывать неполноте наших знаний, несовершенству наших машин и утверждать, будто природа в основе своей обратима. Теперь это безвозвратно ушло в прошлое: ныне даже физика говорит нам, что необратимые процессы играют конструктивную и неоценимую по значимости роль.
Тут мы и подходим к вопросу, уклониться от которого более невозможно. Как соотносятся между собой новая наука о сложности н иаука о простом, элементарном поведении? Какая связь существует между столь противоположными взглядами на прнроду? Не означает ли все это, что существуют две теории, две истины для одного мира? Но как такое возможно?
В определенном смысле мы возвращаемся к самым истокам современной науки. Теперь, как и во времена Ньютона, сошлись лицом к лицу две науки: наука о гравитации, описывающая подчиненную законам вневременную природу, и наука об огне, химия. Ныне мы понимаем, почему первый синтез, достигнутый наукой, ньютоновский синтез, не мог быть полным: описываемые динамикой силы взаимодействия не могут объяснить сложное н необратнмое поведение материи. Ignis mutat res - огонь движет вещами. Согласно этому древнему высказыванию, химические структуры - творение огня, результат необратимых процессов. Как преодолеть брешь между бытием и становлением - двумя противоречащими друг другу понятиями, одинаково необходимыми для достижения согласованного описания того странного мира, в котором мы живем?
ЧАСТЬ ТРЕТЬЯ. ОТ БЫТИЯ К СТАНОВЛЕНИЮ
Глава 7 ПЕРЕОТКРЫТИЕ ВРЕМЕНИ
1. Смещение акцента
Уайтхед некогда писал о том, что «столкновение теорий - не бедствие, а благо, ибо открывает новые перспективы»1. Если это утверждение верно, то в истории науки можно указать считанное число случаев, когда новая перспектива была столь же многообещающей, как и та, которая открылась при непосредственном столкновении двух миров: мира динамики и мира термодинамики.
Ньютоновская наука была вершиной, завершающим синтезом, увенчавшим столетия экспериментирования и теоретических исследований, происходивших в различных направлениях, но метивших в одну точку. То же можно было бы утверждать и относительно термодинамики. Рост науки не имеет ничего общего с равномерным развертыванием научных дисциплин, каждая из которых в свою очередь подразделяется на все большее число водонепроницаемых отсеков. Наоборот, конвергенция различных проблем и точек зрения способствует разгерметизации образовавшихся отсеков и закутков и эффективному «перемешиванию» научной культуры. Поворотные пункты в развитии науки приводят к последствиям, выходящим за рамки чистой науки и оказывающим влияние на всю интеллектуальную среду. Верно и обратное: глобальные проблемы часто были источниками вдохновения в науке.
Столкновение теорий, конфликт между бытием и становлением свидетельствуют о том, что новый поворотный пункт уже достигнут и возникла настоятельная необходимость в новом синтезе. Такой синтез обретает
свою форму в наше время, столь же неожиданную, как и все предыдущие синтезы. Мы снова являемся свидетелями замечательной конвергенции исследований, каждое из которых вносит свой вклад в выяснение природы трудностей, присущих ньютоновской концепции научной теории.
Ньютоновская наука претендовала на создание картины мира, которая била бы универсальной, детерминистической и объективной, поскольку не содержала ссылки на наблюдателя, полной, поскольку достигнутый уровень описания позволял избежать «оков» времени.
Упомянув о времени, мы подходим к самому существу проблемы. Что такое время? Следует ли нам принять ставшее традиционным после Канта противопоставление статического времени классической физики субъективно переживаемому нами времени? Вот что-пишет об этом Карнап:
«Эйнштейн как-то заметил, что его серьезно беспокоит проблема «теперь». Он пояснил, что ощущение настоящего, «теперь», означает для человека нечто существенно отличное от прошлого и будущего, но это важное отличие не возникает и не может возникнуть в физике. Признание в том, что наука бессильна познать это ощущение, было для Эйнштейна болезненным, ио неизбежным. Я заметил, что все происходящее объективно может быть описано наукой. С одною стороны, описанием временной последовательности событий занимается физика, с другой стороны, особенности восприятия человеком времени, в том числе различное отношение человека к прошлому, настоящему и будущему, может быть описано и (в принципе) объяснено психологией. Но Эйнштейн, по-видимому, считал, что эти научиые описания не могут удовлетворить наши человеческие потребности и что с «теперь» связано нечто существенное, лежащее за пределами науки»2.
Интересно отметить, что Бергсон, избравший в определенном смысле иной путь, также пришел к дуалистическому заключению (см. гл. 3). Подобно Эйнштейну, Бергсон начал с субъективного времени и, отправляясь от него, двинулся к времени в природе, времени, объективированному физикой. Но, с точки зрения Бергсона, такая объективизация лишила время прочной основы. Внутреннее экзистенциальное время утратило
при переходе к объективированному времени свои качественные отличительные свойства. По этой причине Бергсон ввел различие между физическим временем и длительностью - понятием, относящимся к экзистенциальному времени.
Но на этом история не кончается. Как заметил Дж. Т. Фрезер, «последовавшее разделение на время ощущаемое и время понимаемое является клеймом научно-промышленной цивилизации, своего рода коллективной шизофренией»3. Как мы уже отмечали, там, где классическая наука подчеркивала незыблемость и постоянство, мы обнаруживаем изменение и эволюцию. При взгляде на небо мы видим не траектории, некогда восхищавшие Канта ничуть не меньше, чем сам пребывающий в нем моральный закон, а некие странные объекты: квазары, пульсары, взрывающиеся и разрывающиеся на части галактики, звезды, коллапенрующие, как нам говорят, в «черные дыры», которые безвозвратно поглощают все, что в них попадает.
Время проникло не только в биологию, геологию н социальные науки, но и на те два уровня, из которых» его традиционно исключали: микроскопический и космический. Не только жизнь, ио и Вселенная в целом имеет историю, и это обстоятельство влечет за собой важные следствия.
Первая теоретическая работа, в которой космологическая модель рассматривалась с точки зрения общей теории относительности, была опубликована Эйнштейном в 1917 г. В ней Эйнштейн нарисовал статическую, безвременную картину мира Спинозы, своего рода миросозерцание в переводе на язык физики. И тогда случилось неожиданное: сразу же после выхода в свет работы Эйнштейна стало ясно, что, помимо найденных им стационарных решений, эйнштейновские уравнения» допускают н другие нестационарные (т. е. зависящие от времени) решения. Этим открытием мы обязаны советскому физику А. А. Фридману и бельгийцу Ж- Леметру. В то же время Хаббл и его сотрудники, занимаясь изучением движения галактик, показали, что скорость дальних галактик пропорциональна расстоянию до них от Земли. В рамках теории расширяющейся Вселенной, основы которой были заложены Фридманом и Леметром, закон Хаббла был очевиден. Тем не менее на протяжении многих лет физики всячески сопротивлялись принятию «исторического» описания эволюции Вселенной. Сам Эйнштейн относился к нему с большой осторожностью. Леметр часто рассказывал, что, когда он пытался обсуждать с Эйнштейном возможность более точного задания начального состояния Вселенной в надежде найти объяснение космических лучей, Эйнштейн не проявил никакого интереса.
Ныне мы располагаем новыми сведениями о знаменитом реликтовом излучении - «свете», испущенном при взрыве сверхплотного файербола, с которого началась наша Вселенная. По иронии истории, Эйнштейн (в известной мере против собственной воли) стал Дарвииом физики. Дарвин учил, что человек составляет неотъемлемую часть биологической эволюции; и Эйнштейи учил, что человек неразрывными узами связан с эволюцией Вселенной. Идеи Эйнштейна привели его к открытию «нового континента», и это открытие было для него столь же неожиданным, как открытие Америки для Колумба. Подобно многим физикам своего поколения, Эйнштейн исходил в своей деятельности из глубокого убеждения в существовании в природе фундаментального простого уровня. Однако ныне этот уровень становится все менее доступным эксперименту. Единственные объекты, поведение которых действительно «просто», существуют в нашем мире на макроскопическом уровне. Классическая наука тщательно выбирала объекты изучения именно на этом промежуточном уровне. Первые объекты, выделенные Ньютоном, действительно были простыми; свободно падающие тела, маятник, движение планет. Однако, как мы знаем теперь, эта простота отнюдь не является отличительной особенностью фундаментального она не может -быть приписана остальному миру.
Достаточно ли этого? Мы знаем ныне, что устойчивость и простота являются скорее исключением, чем правилом. Следует ли просто отбросить претендующие на всеобщность тоталитарные притязания концептуализации, применимые в действительности лишь к простым и устойчивым объектам? Нужно ли проявлять столь большую заботу о том, чтобы согласовать динамику и термодинамику?
Не следует забывать слова Уайтхеда, справедливость которых непрестанно подтверждается историей науки: столкновение теорий не бедствие, а благо, ибо
открывает новые перспективы. Различные авторы довольно часто высказывали мысль о том, что мы из практических соображений игнорируем те или иные проблемы: поскольку те основаны на трудно реализуемых идеализациях. В начале XX в. некоторые физики предлагали отказаться от детерминизма на том основании, что о» недостижим в реальном опыте4. Действительно, мы уже говорили о том, что точные положения и скорости молекул в большой системе никогда нельзя считать известными. Поэтому точио предсказать будущую эволюцию системы невозможно. Впоследствии Бриллюэн попытался подорвать детерминизм, апеллируя к истине на уровне здравого смысла. Точное предсказание, рассуждал он, требует точного знания начальных условий, а за это знание нужно платить. За точное предсказание, необходимое для того, чтобы детерминизм «работал», необходимо платить бесконечно большую цену.
Подобные возражения при всей их разумности неоказывают особого влияния на концептуальный мир динамнки. Не проливают они новый свет и на реальность. Кроме того, усовершенствования в области технологии. могут все больше приближать нас к идеализации, требуемой классической динамикой.
В отличие от таких возражений доказательства «невозможности» имеют фундаментальные значения. Каждое из них открывает какую-то неожиданную внутреннюю структуру реальности, обрекающую на провал чисто умозрительные построения. Такие открытия исключают возможность проведения операции, ранее считавшейся (по крайней мере в принципе) возможной. «Ню один двигатель не может иметь коэффициент полезного действия, который бы превышал единицу», «ни один тепловой двигатель не может производить полезную работу, если он не находится в контакте с двумя источниками (нагревателем и холодильником)», - примеры двух утверждений о невозможности, которые привели к глубокой перестройке системы понятий.
В основе термодинамики, теории относительности и квантовой механики лежат открытия невозможности, установление пределов амбициозных притязаний классической физики. Эти открытия ознаменовали в свое время конец целых направлений в естествознании, достигших своих пределов. Ныне они предстают перед нами в ином свете-не как конец, а как начало, как новая, открывающаяся перспектива. В гл. 9 мы увидим, что второе начало термодинамики выражает «невозможность даже на микроскопическом уровне, но и здесь эта недавно открытая невозможность становится исходным пунктом для возникновения новых понятий.
2. Конец универсальности
Научное описание должно соответствовать источникам, доступным наблюдателю, принадлежащему тому миру, который он описывает, а не существу, созерцающему наш мир «извне». Таково одно из фундаментальных требований теории относительности. Она устанавливает предел скорости распространения сигнала, который не может быть превзойден ни одним наблюдателем. Скорость света с в вакууме (с = 300000 км/с) - предельная скорость распространения всех сигналов. Эта предельная скорость играет весьма важную роль: она ограничивает ту область пространства, которая может влиять на точку нахождения наблюдателя.
В ньютоновской физике нет универсальных постоянных. Именно поэтому она претендует на универсальность, на применимость независимо от масштаба объектов: движение атомов, планет и небесных светил подчиняется единому закону.
Открытие универсальных постоянных произвело коренной переворот в бытующих взглядах. Используя скорость света как эталон для сравнения, физика установила различие между малыми и большими скоростями (последние приближаются к скорости света).
Аналогичным образом постоянная Планка h позволила установить естественную шкалу масс объектов. Атом уже не мог более считаться крохотной планетной системой: электроны принадлежат к иному масштабу масс, чем планеты и все тяжелые медленно движущиеся макроскопические объекты, включая нас самих.
Универсальные постоянные не только разрушили однородность Вселенной введением физических масштабов, позволяющих устанавливать качественные различия между отдельными типами поведения, но и привели к новой концепции объективности. Ни один наблюдатель не может передавать сигналы со скоростью большей, чем скорость света в вакууме. Исходя из
этого постулата, Эйнштейн пришел к весьма замечательному выводу: мы не можем более определить абсолютную одновременность двух пространственно разделенных событий; одновременность может быть определена только относительно данной системы отсчета. Подробное изложение теории относительности увело бы нас слишком далеко от основной темы, поэтому мы ограничимся лишь одним замечанием. Законы Ньютона отнюдь не предполагают, что наблюдатель - «физическое существо». Объективность описания определяется как отсутствие всякого упоминания об авторе описания. Для «нефнзических» разумных существ, способных обмениваться сигналами, распространяющимися с бесконечно большой скоростью, теория относительности была бы неверна. То обстоятельство, что теория относительности основана на ограничении, применимом к физически локализованным наблюдателям, существам, могущим находиться в один момент времени лишь в одном месте, а не всюду сразу, придает физике некую «человечность». Это отнюдь не означает, будто физика субъективна, т. е. является результатом наших предпочтений и убеждений. Физика по-прежнему остается во власти внутренних связей, делающих нас частью того физического мира, который мы описываем. Наша физика предполагает, что наблюдатель находится внутри наблюдаемого им мира. Наш диалог с природой успешен лишь в том случае, если он ведется внутри природы.
3. Возникновение квантовой механики
Теория относительности изменила классическое представление об объективности. Но она оставила неизменной другую принципиально важную отличительную особенность классической физики - претензию на «полное» описание природы. Хотя после создания специальной теории отиосительностн физики уже не могли апеллировать к демону, наблюдающему всю Вселенную извне, но еще обращались к всевышнему-математику, который, по словам Эйнштейна, изощрен, но не злонамерен и не играет в кости. Считалось, что всеведущий математик владеет «формулой Вселенной», включавшей в себя полное описание природы. В этом
смысле теория относительности была продолжением классической физики.
Первой физической теорией, действительно порвавшей с прошлым, стала квантовая механика. Она не только поместила нас в природу, но и присвоила нам атрибут «тяжелые», т. е. состоящие из макроскопически большого числа атомов. Дабы придать большую наглядность физическим следствиям из существования такой универсальной постоянной, как скорость света, Эйнштейн вообразил себя летящим верхом на фотоне. Но, как показала квантовая механика, мы слишком тяжелы для того, чтобы ездить верхом на фотонах ил электронах. Мы не можем заменить те эфемерные существа, которым дано оседлать фотон, не можем отождествить себя с ними и описать, что бы они думали, если бы были наделены способностью мыслить, и что бы они ощущали, если бы могли чувствовать.
История квантовой механики, как и история любой концептуальной инновации, сложна и полна неожиданных событий. Это история логики, следствия из которой были извлечены после того, как она возникла, вызванная к жизни настоятельной потребностью эксперимента, в сложной политической и культурной обстановке5. Не имея возможности сколько-нибудь подробно останавливаться на истории квантовой механики, мы хотим лишь подчеркнуть ту роль, которую она сыграла в наведении моста между бытием и становлением - главной темы книги.
Своим рождением квантовая механика отчасти обязана стремлению физиков преодолеть пропасть, отделявшую бытие от становления. Планка интересовало взаимодействие между веществом и излучением. Он намеревался осуществить для взаимодействия вещества со светом такую же программу, какую Больцман осуществил для взаимодействия вещества с веществом, а именно: построить кинетическую модель необратимых процессов, приводящих к равновесию6. К своему удивлению, Планк обнаружил, что достичь согласия с экспериментальными результатами в условиях теплового равновесия можно, лишь приняв гипотезу о том, что обмен энергией между веществом н излучением происходит только дискретными порциями, пропорциональными новой универсальной постоянной. Эта универсальная постоянная h служит мерой для порций энергии.
И в этом случае, как и во многих других, попытка понять природу необратимости способствовала существенному прогрессу физики.
Открытие дискретности, или квантованности, энергии оставалось вне связи с другими физическими явлениями до тех пор, пока Эйнштейн не предложил первую общую интерпретацию постоянной Планка. Эйнштейн понял, к сколь далеко идущим последствиям приводит открытие Планка для природы света, и выдвинул радикально новое понятие: дуализм волна - частица (для света).
В начале XIX в. физики наделяли свет волновыми свойствами, проявляющимися в таких явлениях, как дифракция и интерференция. Но в конце XIX в. были1 открыты новые явления. Самым важным из новых открытий по праву считается фотоэлектрический эффект- испускание электронов поверхностью металла в результате поглощения света. Объяснить новые экспериментальные результаты традиционными волновыми свойствами света было трудно. Эйнштейн разрешил проблему фотоэлектрического эффекта, предположив, что свет может быть и волной, и частицей и что обе «ипостаси» света связаны между собой постоянной Планка. Точный смысл нашего утверждения состоит в следующем. Световая волна характеризуется частотой v и длиной волны X. Постоянная Планка позволяет переходить от частоты и длины волны к таким механическим величинам, как энергия е и импульс р. Соотношения между v и X, а также между е и р очень просты (s = hv, p = h/X), и оба содержат постоянную Планка h. Через двадцать лет после Эйнштейна Луи де Бройль обобщил дуализм волна - частица со света на материю. Это открытие послужило исходным пунктом современной формулировки квантовой механики.
В 1913 г. Нильс Бор установил связь новой квантовой физики со строением атомов (а впоследствии и молекул). Исходя из дуализма волна - частица, Бор показал, что существует дискретная последовательность орбит электронов. При возбуждении атома электрон прыжком переходит с одной орбиты на другую. В этот самый момент атом испускает или поглощает фотон, частота которого соответствует разности энергии, характеризующей движение электрона по каждой из двух орбит. Эта разность вычисляется по формуле Эйнштейна, устанавливающей соотношение между энергией и частотой.
Наступили решающие 1925-1927 годы - «золотой век» физики7. За этот короткий период Гейзенберг, Борн, Иордан, Шредингер и Дирак превратили квантовую механику в непротиворечивую новую теорию. .Дуализм волна - частица Эйнштейна и де Бройля эта теория органично включила в схему новой обобщенной формы динамики: квантовой механики. Для нас существенна концептуальная новизна квантовой механики.
Первая и, пожалуй, наиболее существенная особенность этой теории состояла в ее новой, неизвестной в классической физике формулировке, которая понадобилась для того, чтобы ввести в теоретический язык квантование. Атом (и это весьма существенно!) может находиться лишь на дискретных энергетических уровнях, соответствующих различным орбитам электронов. Это, в частности, означает, что энергия (или гамильтониан) не может быть функцией только координат и импульса, как в классической механике (в противном случае, придавая координатам и импульсам значения, близкие К исходным, мы могли бы непрерывно изменять энергию, в то время как эксперимент показывает, что существуют лишь дискретные энергетические уровни).
Итак, от традиционного представления о гамильтониане как о функции координат и импульса, необходимо отказаться и заменить его чем-то новым. Основная идея квантовой механики состоит в том, что гамильтониан так же, как и другие величины классической механики, например координаты q или импульсы р, надлежит рассматривать как операторы. Переход от чисел К операторам -одна из наиболее дерзких идей в современной науке, и нам хотелось бы обсудить ее более подробно.
Сама по себе эта идея очень проста, хотя на первый взгляд кажется несколько абстрактной: оператор (математическую операцию, производимую над некоторым объектом) необходимо отличать от объекта, на который он действует, - от функции. Выберем, например, в качестве математического оператора дифференцирование (взятие производной) d/dx. Действуя нашим оператором на какую-нибудь функцию (например, на х2), мы получим новую функцию (в данном случае 2х) Некоторые функции ведут себя при дифференцировании
особым образом. Например, производная от е3х равна Зе3х, т. е. отличается от исходной функции только численным множителем (равным в нашем примере 3). Функции, переходящие под действием оператора (с точностью до численного множителя) в себя, называются собственными функциями данного оператора, а численные множители, на которые они умножаются, - собственными значениями оператора.
Каждому оператору соответствует определенный набор собственных значений, который называется спектром. Если собственные значения образуют дискретную последовательность, то спектр дискретный. Например, существует оператор, имеющий собственными значениями все целые неотрицательные числа: О, I, 2, ... Спектр может быть и непрерывным, например, состоять из всех чисел, заключенных между 0 и I.
Основная идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» операторы, а численным значениям, принимаемым данной физической величиной, - собственные значения ее квантовомеханического оператора. Подчеркнем одну важную особенность квантовой механики: различие, проводимое в ней между понятием физической величины (представимой оператором) и принимаемыми этой величиной численными значениями (представимыми собственными значениями оператора). В частности, энергии в квантовой механике соответствует оператор гамильтониан, а энергетическим уровням (наблюдаемым значениям энергии) - собственные значения спектра гамильтониана.
Введение операторов распахнуло перед физиками ворота в неожиданно богатый и разнообразный микроскопический мир, и нам остается лишь сожалеть, что мы не можем уделить больше места такой увлекательной области науки, как квантовая механика, в которой творческое воображение и экспериментальное наблюдение столь успешно сочетаются друг с другом. Подчеркнем лишь, что микроскопический мир подчиняется законам, имеющим качественно новую структуру. Тем самым раз и навсегда кладется конец всем надеждам на создание единой концептуальной схемы, общей для всех уровней описания.
Новый математический язык, изобретаемый для преодоления вполне определенных трудностей, может способствовать открытию новых областей исследования, полных неожиданностей, превосходящих самые смелые ожидания своих создателей. Так было с дифференциальным исчислением, лежащим в основе классической динамики. Так было и с теорией операторов. Квантовая теория, созданная в ответ на насущную потребность объяснения новых, неожиданных экспериментальных открытий, - вскоре превратилась в почти необозримую terra incognita - бескрайний простор для исследований.
Ныне, через более чем пятьдесят лет после введения операторов в квантовую механику, их значение по-прежнему остается предметом горячих дискуссий. Исторически введение операторов связано с существованием энергетических уровней, но теперь операторы применяются даже в классической физике. Их значение намного превзошло ожидания основателей квантовой механики. Операторы ныне вступают в игру всякий раз, когда по той или иной причине приходится отказываться от понятия динамической траектории, а вместе с ним и от детерминистического описания траектории.
4. Соотношения неопределенности Гейзеиберга
Мы видели, что в квантовой механике каждой физической величине соответствует оператор, который действует на функции. Особенно важную роль играют собственные функции и собственные значения интересующего нас оператора. Собственные значения соответствуют допустимым численным значениям величины. Рассмотрим теперь более подробно квантовомеханические операторы, связанные с координатами q и импульсами р (как показано в гл. 2, эти величины - канонические переменные).
В классической механике координаты и импульсы независимы в том смысле, что мы можем приписывать координате любое численное значение совершенно независимо от того, какое значение приписано нами импульсу. Но существование постоянной Планка h приводит к уменьшению числа независимых переменных. Об этом можно было бы догадаться, исходя из соотношения Эйнштейна - де Бройля K=h/p, связывающего длину волны с импульсом: постоянная Планка есть отношение длины волны частицы (тесно связанной с понятием координаты) к ее импульсу. Следовательно, координаты и импульс квантовомеханическои частицы уже более не являются независимыми переменными, как в классической механике. Операторы, соответствующие координатам и импульсам, как объясняется во всех учебниках квантовой механики, могут быть представлены либо только в координатах, либо только в импульсах.
Важно подчеркнуть, что во всех этих случаях в представление оператора входят только однотипные величины (либо только координаты, либо только импульсы), но не координаты и импульсы одновременно. В этом смысле можно утверждать, что в квантовой механике число независимых переменных вдвое меньше, чем в классической.
Из соотношения между операторами в квантовой механике вытекает одно фундаментальное свойство: два оператора - qon и роп - не коммутируют, т. е., действуя на одну и ту же функцию операторами qon роп и ропqon , мы получим различные функции. Некоммутационность операторов координат и импульсов приводит к весьма важным следствиям, так как только коммутирующие операторы допускают общие собствен