Ознакомьтесь с Условиями пребывания на сайте Форнит Игнорирование означет безусловное согласие. СОГЛАСЕН
 
 
Если в статье оказались ошибки...
 

Этот материал взят из источника в свободном доступе интернета. Вся грамматика источника сохранена.

Хаос, ДЖЕЙМС П. КРАТЧФИЛД, ДЖ.ДОЙН ФАРМЕР

Относится к   «О детерминизме»

Хаос, ДЖЕЙМС П. КРАТЧФИЛД, ДЖ.ДОЙН ФАРМЕР

В хаосе есть порядок: в основе случайности лежит некая геометрическая структура. Хаос налагает принципиальные ограничения на возможность прогнозирования, но в то же время предполагает причинные связи там, где раньше их никто не подозревал

ДЖЕЙМС П. КРАТЧФИЛД, ДЖ.ДОЙН ФАРМЕР, НОРМАН X. ПАККАРД, РОБЕРТ С. ШОУ

ОГРОМНАЯ сила науки заключена в ее способности устанавливать связь между причиной и следствием. Например, законы гравитации позволяют предсказывать затмения на тысячи лет вперед. Другие явления природы не поддаются столь точному предсказанию. Течения в атмосфере так же строго подчиняются физическим законам, как и движения планет, тем не менее прогнозы погоды все еще имеют вероятностный характер. И погода, и течение горной реки, и движение брошенной игральной кости имеют в своем поведении непредсказуемые аспекты. Так как в этих явлениях не видно четкой связи между причиной и следствием, говорят, что в них присутствует элемент случайности. Однако до недавнего времени было мало оснований сомневаться в том, что в принципе можно достичь точной предсказуемости. Считалось, что для этого необходимо только собрать и обработать достаточное количество информации.

Такую точку зрения круто изменило поразительное открытие: простые детерминированные системы с малым числом компонент могут порождать случайное поведение, причем эта случайность имеет принципиальный характер — от нее нельзя избавиться, собирая больше информации. Порождаемую таким способом случайность стали называть хаосом.

Кажущийся парадокс состоит в том, что хаос детерминирован — порожден определенными правилами, которые сами по себе не включают никаких элементов случайности. В принципе будущее полностью определено прошлым, однако на практике малые неопределенности растут и поэтому поведение, допускающее краткосрочный прогноз, на долгий срок непредсказуемо. Таким образом, в хаосе есть порядок: в основе хаотического поведения лежат изящные геометрические структуры, которые создают случайность таким же спосо бом, как создает ее сдающий карты, тасуя колоду, или миксер, размешивая тесто для бисквита.

Открытие хаоса породило новый образец научного моделирования. С одной стороны, оно ввело новые принципиальные ограничения на возможность предсказаний. С другой стороны, заложенный в хаосе детерминизм показал, что многие случайные явления более предсказуемы, чем считалось раньше. Собранная в прошлом информация, казавшаяся случайной и отправленная на полку как слишком сложная, теперь получила объяснение при помощи простых законов. Хаос позволяет находить порядок в столь различных системах, как атмосфера, подтекающий водопроводный кран или сердце. Это революционное открытие затронуло многие области науки.

КАКОВЫ источники случайного поведения? Классическим примером служит броуновское движение. Рассматриваемая в микроскоп пылинка совершает свой безостановочный и беспорядочный танец под дей ствием теплового движения окружающих ее молекул воды. Поскольку молекулы воды невидимы, а число их огромно, точное движение пылинки совершенно непредсказуемо. Таким образом, паутина причинных воздействий одних частей системы на другие может стать настолько запутанной, что окончательная картина поведения будет совсем случайной.

Хаос, о котором речь пойдет в статье, не связан ни с большим числом компонент, ни с их невидимыми воздействиями. Наличие случайного поведения в очень простых системах заставляет по-новому взглянуть и на такие большие системы, как атмосфера.

Почему предвидеть течения в атмосфере намного труднее, чем движения в Солнечной системе? И та и другая составлены из многих частей, и обе подчиняются второму закону Ньютона F=та, который можно рассматривать как простое предписание для предсказания будущего. Если действующие на массу m силы F известны, то известно и ускорение а. Тогда получается, что, как только положе-

16

Лаплас,1776 г.

“Состояние системы природы в настоящем есть, очевидно, следствие того, каким оно было в предыдущий момент, и если мы представим себе разум, который в данное мгновение постиг все связи между объектами Вселенной, то он сможет установить соответствующие положения, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем.

Физическая астрономия, область знания, которая делает величайшую честь человеческому уму, дает нам представление, хотя и неполное, чем был бы такой разум. Простота законов, по которым движутся небесные тела, и соотношения между их массами и расстояниями позволяют проанализировать их движение до определенной точки, и, чтобы определить состояние системы этих крупных тел в прошлых или будущих веках, математику достаточно того, чтобы их положение и скорость были получены из наблюдений в любой момент времени. Человек обязан этим мощности приборов, которыми он пользуется, и небольшому числу соотношений, которые он применяет в своих расчетах. Однако незнание различных причин, вызывающих те или иные события, а также их сложность в сочетании с несовершенством анализа мешает нам достичь той же уверенности по отношению к огромному большинству явлений. Таким образом, существуют вещи, которые для нас неопределенны, вещи, более или менее вероятные, и мы стараемся компенсировать невозможность их узнать, определяя различные степени их достоверности. Получается, что слабости человеческого разума мы обязаны появлением одной из самых тонких и искусных математических' теорий — науки о случае, или о вероятности”.

Пуанкаре,1903 г.

“Совсем незначительная причина, ускользнувшая от нашего внимания, вызывает значительный эффект, который мы не можем не заметить, и тогда мы говорим, что этот эффект вызван случаем. Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в

последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая”.

ВГЛЯДЫ ДВУХ ВЕЛИКИХ УЧЕНЫХ на случайность и вероятность совершенно противоположны. Французский математик Пьер Симон Лаплас полагал, что законы природы подразумевают строгий детерминизм и полную предсказуемость, хотя несовершенство наблюдений и требует введения теории вероятностей. Высказывание Пуанкаре предвосхищает современный взгляд, согласно которому сколь угодно малые неопределенности в состоянии системы могут усиливаться со временем и предсказания отдаленного будущего могут стать невозможными.

 

ние и скорость какого-то объекта измерены в некоторый заданный момент, они однозначно определены навсегда. Идея оказалась настолько сильнодействующей, что французский математик XVІІI в. Пьер Симон Лаплас однажды заявил, что, если бы для каждой частицы во Вселенной были заданы положение и скорость, он мог бы предсказать будущее на все остальное время. И хотя на пути к достижению этой поставленной Лапласом цели есть очевидные практические трудности, более ста лет как будбудто не было никаких причин сомневаться в том, что по крайней мере в принципе Лаплас прав. Буквальное распространение этого заявления Лапласа на социальные явления привело к философскому выводу о полной предопределенности поведения людей: свободной воли не существует.

Наука XX в. покончила с лапласовым детерминизмом. Первый удар ему нанесла квантовая механика. Одно из главных положений этой теории — открытый Гейзенбергом принцип неопределенности, который утверждает, что одновременно положение и скорость частицы не могут быть точно измерены. Принцип неопределенности хорошо объясняет, почему некоторые случайные явления, такие, как радиоактивный распад, не подчиняются лапласову детерминизму. Ядро настолько мало, что вступает в силу принцип неопределенности, и точно знать происходящие в ядре процессы принципиально невозможно, а потому, сколько бы ни было собрано о нем информации, нельзя точно предсказать, когда оно распадется.

Однако источник непредсказуемости для крупномасштабных систем следует искать в другом. Одни крупномасштабные явления предсказуемы, другие — нет, и квантовая механика тут ни при чем. Например, траектория бейсбольного мяча в принципе предсказуема, и каждый игрок интуитивно пользуется этим всякий раз, когда ловит мяч. Напротив, траектория воздушного шара, когда из него вырывается воздух, непредсказуема: он кренится и беспорядочно вертится в какие-то моменты и в каких-то местах, которые нельзя предвидеть. Но ведь этот воздушный шар подчиняется тем же законам Ньютона, что и бейсбольный мяч; почему же прогнозировать его поведение труднее?

Классический пример подобного двоякого поведения дает течение жидкости. При одних обстоятельствах оно является ламинарным — ровным, устойчивым, регулярным — и легко предсказывается при помощи уравнений. При других обстоятельствах течение становится турбулентным — неровным, неустойчивым, нерегулярным — и трудно предсказуемым. Переход от ламинарного поведения к турбулентному знаком каждому, кто хоть раз летел в самолете в спокойную погоду и затем внезапно попадал в грозу. Чем объяснить существенную разницу между ламинарным и турбулентным течением?

ЧТОБЫ ЛУЧШЕ понять, в чем тут загадка, допустим, что мы решили посидеть у горного ручья. Вода кружится в водоворотах и плещется

18

так, будто по собственной воле бросается то туда, то сюда. Но ведь камни в русле ручья прочно лежат на месте, а приток воды почти одинаков. Чем же вызван случайный характер ее движения?

Советский физик Л. Д. Ландау в свое время предложил объяснение случайного движения жидкости, которое господствовало много лет. Оно состояло в том, что в турбулентном течении возникает много различных независимых колебаний (вихрей). При увеличении скорости течение станет еше более турбулентным и постепенно, по одной, будут прибавляться новые частоты. Хотя каждое отдельное колебание может быть простым, их сложное сочетание приводит к движению, которое невозможно предсказать.

Однако по поводу теории Ландау возникли сомнения. Случайное поведение проявляют даже системы, не отличающиеся ни особой сложностью, ни неопределенностью. Еще на рубеже века это осознал французский математик Анри Пуанкаре, отметив, что непредсказуемые, возникающие “по воле случая” явления присущи скорее таким системам, где небольшие изменения в настоящем приводят к заметным изменениям в будущем. Представим себе камень на вершине холма. Чуть-чуть подтолкнув его в ту или иную сторону, мы заставим его катиться вниз по совсем разным путям. Но, если камень чувствителен к малым воздействиям только пока он находится на вершине холма, хаотические системы чувствительны к ним в каждой точке своего движения.

Чтобы показать, насколько чутко реагируют некоторые физические системы на внешние воздействия, приведем простой пример. Представим себе несколько идеализированный бильярд, в котором шары катятся по столу и сталкиваются между собой так, что потерями энергии можно пренебречь. Игрок делает один удар, и начинается длинная серия столкновений; естественно, он хочет знать, что последует за его ударом. На какой срок может игрок, в совершенстве контролирующий свой удар, предсказать траекторию шара, который он толкнул своим кием? Если он пренебрежет даже столь малым воздействием, как гравитационное притяжение электрона на краю галактики, прогноз окажется неверным уже через одну минуту!

ФАЗОВОЕ ПРОСТРАНСТВО дает удобное средство для наглядного представления поведения динамической системы. Это абстрактное пространство, координатами в котором являются степени свободы системы. Например, движение маятника (вверху) полностью определено его начальной скоростью и положением. Таким образом, его состоянию отвечает точка на плоскости, координатами которой являются положение и скорость маятника (внизу). Когда маятник качается, эта точка описывает некоторую траекторию, или “орбиту”, в фазовом пространстве. Для идеального маятника без трения орбита представляет собой замкнутую кривую (внизу слева), в противном случае орбита сходится по спирали к точке (внизу справа).

 

Быстрый рост неопределенности объясняется тем, что шары не идеальны, и небольшие отклонения от идеальной траектории в точке удара с каждым новым столкновением увеличиваются. Рост происходит экспоненциально подобно тому, как размножаются бактерии в условиях неограниченного пространства и запаса пищи. С каждым новым столкновением ошибки накапливаются, и любое даже самое малое воздействие быстро достигает макроскопических- размеров. Это одно из основных свойств хаоса*.

Экспоненциальное накопление ошибок, свойственное хаотической динамике, стало вторым камнем преткновения для лапласова детерминизма. Квантовая механика установила, что начальные измерения всегда неопределенны, а хаос гарантирует, что эти неопределенности быстро превысят пределы предсказуемости. Не будь хаоса, Лаплас мог бы тешиться надеждой, что ошибки останутся ограниченными или хотя бы будут расти достаточно медленно, позволяя делать долгосрочный прогноз. При наличии хаоса достоверность прогнозов быстро падает.

ПОНЯТИЕ хаоса относится к так называемой теории динамических систем. Динамическая система состоит из двух частей: понятия состояния (существенной информации о системе) и динамики (правила, описывающего эволюцию системы во времени). Эволюцию можно наблюдать в пространстве состояний, или фазовом пространстве, — абстрактном пространстве, в котором координатами служат компоненты состояния. При этом координаты выбираются в зависимости от контекста. В случае механической системы это могут быть положение и скорость, в случае экологической модели — популяции различных биологических видов.

Хороший пример динамической системы — простой маятник. Его движение задается всего двумя переменными: положением и скоростью. Таким образом, его состояние — это точка на плоскости, координаты которой — положение маятника и его скорость. Эволюция состояния описывается правилом, которое выводится из законов Ньютона и выражается математически в виде дифференциального уравнения. Когда маятник качается взад-вперед, его состояние — точка на плоскости — движется по некоторой траектории (“орбите”). В идеальном случае маятника без трения орбита представляет собой петлю; при наличии трения орбита закручивается по спирали к некоторой точке, соответствующей остановке маятника.

Динамическая система может развиваться либо в непрерывном времени, либо в дискретном времени. Первая называется потоком, вторая — отображением (иногда каскадом). Маятник непрерывно движется от одного положения к другому и, следовательно, описывается динамической системой с непрерывным временем, т. е. потоком. Число насекомых, рождающихся каждый год в определенном ареале, или промежуток времени между каплями из подтекающего водопроводного крана более естественно описывать системой с дискретным временем, т. е. отображением.

Чтобы узнать, как развивается система из заданного начального состояния, нужно совершить бесконечно малое продвижение по орбите, а для этого можно воспользоваться динамикой (уравнениями движения). При таком методе объем вычислительной работы пропорционален времени, в течение которого мы хотим двигаться по орбите. Для простых систем типа маятника без трения может оказаться, что уравнения движения допускают решение в замкнутой форме, т. е. существует формула, выражающая любое будущее состояние через начальное состояние. Такое решение дает “путь напрямик”, т. е. более простой алгоритм, в котором для предсказания будущего используется только начальное состояние и окончательное время и который не требует прохода через все промежуточные состояния. В таком случае объем работы, затрачиваемой на прослеживание движения системы, почти не зависит от конечного значения времени. Так, если заданы уравнения движения планет и Луны, а также положения и скорости Земли и Луны, то можно, например, на много лет вперед предсказать затмения.

Благодаря успешному нахождению решений в замкнутой форме для многих разнообразных простых систем на ранних стадиях развития физики появилась надежда, что для всякой механической системы существует такое решение. Теперь известно, что это, вообще говоря, не так. Непредсказуемое поведение хаотических динамических систем нельзя описать решением в замкнутой форме. Значит, при установлении их поведения у нас нет никакого “пути напрямик”.

АТТРАКТОРЫ — это геометрические структуры, характеризующие поведение в фазовом пространстве по прошествии длительного времени. Грубо говоря, аттрактор — это то, к чему система стремится прийти, к чему она притягивается. Здесь аттракторы показаны синим цветом, а начальные состояния — красным. Траектории, выйдя из начальных состояний, в конце концов приближаются к аттракторам. Самый простой тип аттрактора — неподвижная точка (вверху слева). Такой аттрактор соответствует поведению маятника при наличии трения; маятник всегда приходит в одно и то же положение покоя независимо от того, как он начал колебаться (см. правую половину рисунка на предыдущей странице). Следующий, более сложный аттрактор — предельный цикл (вверху в центре), который имеет форму замкнутой петли в фазовом пространстве. Предельный цикл описывает устойчивые колебания, такие, как движение маятника в часах или биение сердца. Сложному колебанию, или квазипериодическому движению, соответствует аттрактор в форме тора (вверху справа). Все три аттрактора предсказуемы: их поведение можно прогнозировать с любой точностью. Хаотические аттракторы соответствуют непредсказуемому движению и имеют более сложную геометрическую форму. Три примера хаотических аттракторов изображены в нижнем ряду; они получены (слева направо) Э. Лоренцем, О. Рёсслером и одним из авторов (Шоу) соответственно путем решения простых систем дифференциальных уравнений с трехмерным фазовым пространством.

 

20

И ВСЕ-ТАКИ фазовое пространство дает мощное средство для изучения хаотических систем, так как оно позволяет представить их поведение в геометрической форме. Так, в нашем примере маятника с трением, который в конце концов останавливается, его траектория в фазовом пространстве приходит в некоторую точку. Это неподвижная точка; так как она притягивает близлежащие орбиты, ее называют притягивающей неподвижной точкой, или аттрактором (от англ. to attract — притягивать. — Перев.). Если сообщить маятнику небольшой толчок, его орбита вернется в неподвижную точку. Всякой системе, которая с течением времени приходит в состояние покоя, отвечает неподвижная точка в фазовом пространстве. Это явление имеет весьма общий характер: потери энергии из-за трения или, например, вязкости приводят к тому, что орбиты притягиваются к небольшому множеству фазового пространства, имеющему меньшую размерность. Всякое такое множество называется аттрактором. Грубо говоря, аттрактор отвечает установившемуся поведению системы — тому, к которому она стремится.

Некоторые системы не останавливаются по прошествии длительного времени, а циклически проходят некоторую последовательность состояний. Пример — часы с маятником, которые заводятся при помощи пружины или гирь. Маятник снова и снова повторяет свой путь. В фазовом пространстве его движению соответствует периодическая траектория, или цикл. Неважно, как маятник запущен в движение — в конце концов он придет к тому же циклу. Такие аттракторы называются предельными циклами. Другой знакомой всем системой с предельным циклом является сердце.

Одна и та же система может иметь несколько аттракторов. Если это так, то разные начальные условия могут привести к разным аттракторам. Множество точек, приводящих к некоторому аттрактору, называется его областью притяжения. Система с маятником имеет две такие области: при небольшом смешении маятника от точки покоя он возвращается в эту точку, однако при большом отклонении часы начинают тикать, и маятник совершает стабильные колебания.

 

ХАОТИЧЕСКИЙ АТТРАКТОР имеет гораздо более сложное строение, чем предсказуемые аттракторы — точка, предельный цикл или тор. В крупном масштабе хаотический аттрактор есть неровная поверхность со складками. Показаны этапы образования хаотического аттрактора на примере аттрактора Рёсслера (внизу). Сначала близкие траектории на объекте расходятся экспоненциально (вверху); расстояние между соседними траекториями увеличивается примерно вдвое. Чтобы остаться в конечной области, объект складывается (в центре): поверхность сгибается и ее края соединяются. Аттрактор Рёсслера наблюдался во многих системах, от потоков жидкости до химических реакций; этот факт иллюстрирует максиму Эйнштейна о том, что природа предпочитает простые структуры.

 

Более сложный аттрактор имеет форму тора (напоминающую поверхность бублика). Такая форма отвечает движению, составленному из двух независимых колебаний, — так называемому квазипериодическому движению. (Физические примеры можно построить при помощи электрических осцилляторов.) Траектория навивается

21

на тор в фазовом пространстве, одна частота определяется временем оборота по малому кругу тора, другая — по большому кругу. Для комбинации более чем двух вращений аттракторами могут быть многомерные торы.

Важное отличительное свойство квазипериодического движения состоит в том, что, несмотря на сложный характер, оно предсказуемо. Хотя траектория может никогда не повторяться точно (если частоты несоизмеримы), движение остается регулярным. Траектории, начинающиеся поблизости одна от другой на торе, так и остаются поблизости одна от другой, и долгосрочный прогноз гарантирован.

22

ДО НЕДАВНЕГО времени были известны лишь перечисленные виды аттракторов: неподвижные точки, предельные точки, предельные циклы и торы. В 1963 г. Э. Лоренц из Массачусетского технологического института открыл конкретную систему низкой размерности со сложным поведением. Движимый желанием понять, в чем трудность с прогнозами погоды, он рассмотрел уравнения движения жидкости (они описывают и атмосферные течения) и путем упрощений получил систему ровно с тремя степенями свободы.

Тем не менее эта система вела себя случайным образом и не поддавалась адекватному описанию с помощью какого-нибудь из известных аттракторов. Обнаруженный Лоренцем аттрактор, называемый теперь его именем, стал первым примером хаотического, или странного, аттрактора.

Промоделировав свою простую систему на компьютере, Лоренц выявил основной механизм, который вызывал случайное поведение: микроскопические возмущения накапливаются и влияют на макроскопическое поведение. Две траектории с близкими начальными условиями экспоненциально расходятся в процессе эволюции, так что они проходят рядом лишь совсем недолго. В случае нехаотических аттракторов качественная картина совершенно другая. Для них близкие траектории так и остаются близкими, небольшие ошибки остаются ограниченными, и поведение предсказуемо.

Ключ к пониманию хаотического поведения дает простая процедура растягивания и образования складок в фазовом пространстве. Экспоненциальная расходимость — локальное явление: поскольку аттрактор имеет конечные размеры, две орбиты на хаотическом аттракторе не могут экспоненциально расходиться навсегда. Это означает, что такой аттрактор должен образовывать складки внутри самого себя. И хотя орбиты расходятся и следуют совершенно разными путями, в конце концов они должны пройти снова вблизи друг от друга. В результате орбиты на хаотическом аттракторе перемешиваются подобно тому, как перетасовываются карты в колоде. Случайность хаотических орбит есть результат этого процесса перемешивания. Вытягивание и образование складок происходит снова и снова, создавая складки внутри складок, и так до бесконечности. Иначе говоря, хаотический аттрактор является фракталом — объектом, в котором по мере увеличения выявляется все больше деталей (см. рисунок справа).

Хаос перемешивает орбиты в фазовом пространстве точно так же,

23

как пекарь месит тесто для выпечки хлеба. Представить себе, что происходит с близлежащими траекториями на хаотическом аттракторе, поможет такой эксперимент. Добавим в тесто каплю синей пищевой краски. Вымешивание теста — это комбинация двух действий: его то раскатывают (при этом цветное пятно расширяется), то складывают. Поначалу пятно просто становится длиннее, затем образуются складки, и все это повторяется снова и снова. При ближайшем рассмотрении оказывается, что тесто состоит из многих слоев попеременно белого и голубого цвета. Уже через 20 шагов исходное пятно вытягивается более чем в 20 млн. раз по сравнению с начальной длиной, а его толщина сокращается до молекулярных размеров. Синяя краска полностью перемешалась с тестом. Хаос действует точно так же, только вместо теста он перемешивает фазовое пространство. Вдохновленный этой картиной, О. Ресслер из Тюбингенского университета построил простейший пример хаотического аттрактора в потоке (см. рисунок на странице 21).

При наблюдении физической системы из-за неизбежных ошибок измерения нельзя точно задать ее состояние. Одному состоянию отвечает не точка, а малая область в фазовом пространстве. Предельные размеры области устанавливает соотношение неопределенностей, но на деле различного рода шумы ухудшают точность измерений и способствуют появлению более заметных ошибок. Эта малая область аналогична синей капле в тесте.

ЛОКАЛИЗАЦИЯ системы в малой области фазового пространства, достигнутая путем измерения, дает определенное количества информации об этой системе. Чем точнее проведено измерение, тем больше знает наблюдатель о состоянии системы. И наоборот, чем больше область, тем меньше уверенности у наблюдателя. Поскольку в нехаотической системе близко расположенные точки остаются близкими в процессе эволюции, часть информации, полученной измерением, сохраняется во времени. Именно в этом смысле такие системы предсказуемы: начальное измерение содержит информацию, которой можно воспользоваться для прогноза будущего поведения. Иначе говоря, предсказуемые динамические системы не особенно чувствительны к ошибкам измерения.

Вытягивание и складывание хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой: при растяжении увеличиваются мелкомасштабные неопределенности, при складывании сближаются далеко отстоящие траектории и стирается крупномасштабная информация. Таким образом, хаотические аттракторы действуют как своего рода помпа, “подкачивающая” микроскопические флуктуации в макроскопическое проявление. Отсюда ясно, что никакого точного решения, никакого кратчайшего пути для прогноза будущего быть не может. Проходит совсем немного времени, и неопределенность, возникшая при начальном измерении, покрывает весь аттрактор, лишая нас возможности делать какие бы то ни было предсказания: между прошлым и будущим уже нет никакой причинной связи.

24

ХОТЯ АНАЛИЗ, проведенный Голлубом и Суинни, подкреплял представление, что некоторые случайные движения в потоках жидкости связаны с хаотическими аттракторами, их работа ничего не доказывала. Хотелось иметь более явное свидетельство о наличии в полученных экспериментальных данных простого хаотического аттрактора. Обычно в эксперименте регистрируются не все характеристики системы, а только некоторые из них. Например, Голлуб и Суинни не могли полностью регистрировать течение Куэтта; они измеряли только скорость жидкости в одной точке. Задача исследователя — воспроизвести аттрактор при помощи неполных данных. Ясно, что это не всегда возможно: если аттрактор слишком сложный, что-то будет потеряно. Однако в отдельных случаях динамику можно восстановить на основе неполных данных.

Введенная нами методика, которой Такенс дал прочное математическое обоснование, позволяет воссоздать (“реконструировать”) фазовое пространство и искать хаотические аттракторы. Ее основная идея состоит в том, что эволюция всякой отдельной компоненты системы определяется другими компонентами, с которыми она взаимодействует. Таким образом, информация о таких компонентах неявно содержится в “истории” отдельной компоненты. Чтобы воссоздать “эквивалентное” фазовое пространство, мы берем просто одну компоненту и обращаемся с измеренными значениями при фиксированных запаздываниях (например, секунду назад, две секунды назад и т. д.) так, как будто это новые размерности.

Эти “запоздалые” значения можно рассматривать как новые координаты, задающие точку в многомерном фазовом пространстве. Повторяя процедуру с другими интервалами запаздывания, получаем много таких точек. Затем другими приемами можно проверить, лежат или не лежат эти точки на хаотическом аттракторе. Хотя такое представление во многих отношениях произвольно, оказалось, что оно сохраняет многие важные свойства аттрактора, которые, как выяснилось, не зависят от деталей реконструкции.

Для иллюстрации этой методики воспользуемся примером, который замечателен тем, что знаком и доступен почти каждому. Большинство людей осознают периодичность падения капель из подтекающего крана. Время между последовательными каплями может быть вполне регулярным, и не трудно угадать момент, когда упадет следующая капля. Менее известно поведение крана при несколько большей скорости течения. Часто удается найти такой режим, что капли, хотя и продолжают падать по одной, создают никогда не повторяющийся перестук подобно бесконечно изобретательному барабанщику. (Этот эксперимент легко выполнить самому; лучше воспользоваться краном без насадки.) Смены периодических и случайных режимов напоминают переход от ламинарного течения к турбулентному. Быть может, за этой случайностью скрывается простой хаотический аттрактор?

Один из авторов (Шоу) в сотрудничестве с П. Скоттом, С. Поупом и Ф. Мартейном проводил экспериментальное изучение подтекающего крана в Калифорнийском университете (Санта-Крус). В первоначальном эксперименте капли из Обычного крана падали на микрофон, и измерялись интервалы времени между звуковыми импульсами. Типичные результаты несколько более тонкого эксперимента проиллюстрированы рисунком на с. 25. Отложив на осях временные интервалы между последовательными парами капель, мы получим сечение соответствующего аттрактора. Например, в периодическом режиме мениск срывающихся капель изменяется гладким повторяющимся образом, чему соответствует предельный цикл в фазовом пространстве. Однако это гладкое изменение в реальном опыте недоступно измерению; регистрируются только интервалы между моментами, когда разбиваются отдельные капли. Это напоминает прерывистое освещение регулярного движения по петле. Если правильно подобрать время вспышек, движущийся предмет будет казаться застывшим в одной точке.

Эксперимент привел к впечатляющему результату: в непериодическом режиме подтекающего крана действительно были найдены хаотические аттракторы. Случайное поведение капель могло бы вызываться какими-то невидимыми воздействиями: небольшими вибрациями или воздушными потоками. Если бы это было так, то между последовательными интервалами не было бы никакой связи, и на графике получалось бы лишь некое бесформенное образование. Тот факт, что график имеет определенную структуру, уже сам по себе показывает, что случайность здесь имеет детерминированное основание. В частности, многие наборы данных приводят к подковообразной форме, что является признаком процесса растягивания и складывания, о котором говорилось выше. Эта характерная форма есть как бы “моментальный снимок” складки в процессе ее образования, например сечение на пути вокруг аттрактора Рёсслера, показанного на с. 21. Другие наборы данных выглядят более сложными; они могут оказаться сечениями многомерных аттракторов. Геометрия более чем трехмерных аттракторов в настоящее время почти неизвестна.

ЕСЛИ СИСТЕМА хаотична, можно ли узнать, насколько она хаотична? Мерой хаоса служит “энтропия” движения, которая, грубо говоря, равна средней скорости растяжения и складывания или средней скорости, с которой “производится” информация*. Другой статистической характеристикой служит “размерность” аттрактора**. Поведение простой системы должно описываться в фазовом пространстве аттрактором малой размерности наподобие приведенных нами примеров. Чтобы задать состояние более сложной системы, может потребоваться несколько чисел, и в таком случае аттрактор может иметь более высокую размерность.

Методика реконструкции наряду с измерением энтропии и размерности позволяет по-новому исследовать течение, изученное Голлубом и Суинни. Такое исследование было выполнено сотрудниками из группы Суинни при участии двоих из нас (Кратчфилда и Фармера). Реконструкция позволила нам получить изображения соответствующего аттрактора. При этом такой же потрясающей картины аттрактора малой размерности, которая была получена при исследовании других систем, например подтекающего крана, получить не удалось. Однако измерения энтропии и размерности

27

выявили, что нерогулярное движение жидкости вблизи перехода в течении Куэтта можно описать хаотическими аттракторами. Когда скорость вращения в ячейке Куэтта увеличивается, возрастают энтропия и размерность соответствующих аттракторов.

В последние несколько лет для многих систем со случайным поведением удалось найти простой хаотический аттрактор. Среди них — конвективное течение в жидкости, нагреваемой в небольшом сосуде, колебание концентрации веществ при химических реакциях с перемешиванием, сокращение клеток сердца цыпленка, а также колебательные процессы в большом числе электрических цепей и механических установок. Вдобавок тот же простой тип случайности был установлен для построенных при помощи компьютера моделей многих столь разнообразных явлений, как эпидемии, электрическая активность нервной клетки, пульсации звезд. Сейчас идут эксперименты с целью найти хаос даже в таких несхожих вещах, как рождение блестящей идеи и экономика.

Следует, однако, подчеркнуть, что теория хаоса ни в коей мере не панацея. Движения систем со многими степенями свободы сложны и имеют случайный характер, и, даже если известно, что некая данная система хаотична, сам по себе этот факт мало что проясняет. Хороший пример — сталкивающиеся друг с другом молекулы в газе. Хотя известно, что такая система хаотична, это нисколько не облегчает предсказание ее поведения. В движении участвует так много частиц, что можно надеяться лишь на статистическое описание, а основные статистические свойства выводятся без учета хаоса.

Существуют другие неисследованные вопросы, для которых роль хаоса неизвестна. Что можно сказать о постоянно меняющихся пространственно протяженных системах, таких, как дюны в Сахаре или достигшее полного развития турбулентное течение? Неясно, допускают ли сложные пространственно протяженные системы удобное описание при помощи одного аттрактора в одном фазовом пространстве. Однако опыт обращения с простейшими аттракторами, быть может, подскажет более разветвленную картину целых семейств пространственно мобильных детерминированных форм наподобие хаотических аттракторов.

Существование хаоса затрагивает сам научный метод. Классический способ проверки теории состоит в том, чтобы сделать предсказание и сверить его с экспериментальными

данными. Но для хаотических явлений долгосрочный прогноз в принципе невозможен, и это следует принимать во внимание при оценке достоинств теории. Таким образом, проверка теории становится гораздо более тонкой процедурой, опирающейся больше на статистические и геометрические свойства, чем на подробное предсказание.

Хаос бросает новый вызов сторонникам редукционизма, которые считают, что для изучения системы ее 'нужно разбить на части и изучать каждую часть. Эта точка зрения удерживалась в науке благодаря тому, что есть очень много систем, для которых поведение в целом действительно складывается из поведения частей. Однако хаос показывает нам, что система может иметь сложное поведение вследствие простого нелинейного взаимодействия всего нескольких -компонент.

Эта проблема становится острой в широком диапазоне научных дисциплин, от описания микроскопических физических явлений и до моделирования макроскопического поведения биологических организмов. За последние годы сделан огромный шаг вперед в умении подробно разобраться, какова структура той или иной системы, однако способность объединять собранные сведения в цельную картину зашла в тупик из-за отсутствия подходящей общей концепции, в рамках которой можно было бы качественно описывать поведение. Например, располагая даже “годной схемой нервной системы какого-нибудь простого организма вроде нематоды, изученной С. Бреннером из Кэмбриджского университета, из нее нельзя вывести поведение этого организма. Точно так же необоснованна точка зрения, что физика исчерпывается выяснением природы фундаментальных физических сил и элементарных составляющих. Взаимодействие компонент в одном масштабе может вызывать сложное глобальное поведение в более крупном масштабе, которое в общем случае нельзя вывести из знаний поведения отдельных компонент.

Хаос часто рассматривают в свете налагаемых его существованием ограничений, таких, как отсутствие предсказуемости. Однако природа может пользоваться хаосом конструктивно. Через усиление малых флуктуаций она, возможно, открывает системам природы доступ к новизне. Быть может, жертва, ускользнувшая от хищника, чтобы не быть схваченной, воспользовалась хаотической регулировкой полета как элементом неожиданности. Биологическая эволюция требует генетической изменчивости, а хаос порождает случайные изменения структуры, открывая тем самым возможность поставить изменчивость под контроль эволюции.

Даже процесс интеллектуального прогресса зависит от появления новых идей и нахождения новых способов увязывать старые идеи. Врожденная творческая способность, быть может, скрывает за собой хаотический процесс, который селективно усиливает малые флуктуации и превращает их в макроскопические связанные состояния ума, которые мы ощущаем как мысли. Иногда это могут быть какие-то решения или то, что осознается как проявление воли. С этой точки зрения хаос предоставляет нам механизм для проявления свободной воли в мире, который управляется детерминированными законами.



Обсуждение Еще не было обсуждений.


Последнее редактирование: 2018-04-19

Оценить статью можно после того, как в обсуждении будет хотя бы одно сообщение.
Об авторе:
Этот материал взят из источника в свободном доступе интернета. Вся грамматика источника сохранена.



Тест: А не зомбируют ли меня?     Тест: Определение веса ненаучности

Последняя из новостей: Трилогия: Основы фундаментальной теории сознания.

Обнаружен организм с крупнейшим геномом
Новокаледонский вид вилочного папоротника Tmesipteris oblanceolata, произрастающий в Новой Каледонии, имеет геном размером 160,45 гигапары, что более чем в 50 раз превышает размер генома человека.
Тематическая статья: Тема осмысления

Рецензия: Рецензия на “Интеграция информации в электромагнитном поле мозга: CEMI-теория сознания Джонджо Макфадден”

Топик ТК: Нематериальные абстракции и физические процессы
 посетителейзаходов
сегодня:00
вчера:00
Всего:19222372

Авторские права сайта Fornit