Рис.1 Можно с одинаковым основанием считать эту фигуру усеченным кубом или октаэдром. Бакминстер Фуллер, обнаруживший этот многогранник, считал, что он является величайшей из всех форм творения. Для него этот многогранник был так важен, что он присвоил ему совершенно новое имя - векторное равновесие. Ниже мы увидим, что такое название чрезвычайно актуально, т.к. свойства всех кристаллов будут определяться именно их внутренними векторными свойствами. Он открыл, что эта форма, через разные формы вращения, превращается во все пять Платоновых тел. Кажется, что эта форма содержит их все внутри себя. Двойником кубоктаэдра является ромбододэкаэдр, который получается путем соединения центров кубоктаэдра (и наоборот). Д. Мельхиседек пишет об этом следующим образом (т.1, стр. 194): "Я думаю, что первые пять Платоновых тел - это первые пять нот пентатоники. В октаве 7 нот, последние две относятся к кубоктаэдру и ромбодекаэдру". Видимо, не будет преувеличением сказать, что и остальные пять дополнительных монадных форм, которые образуют целостную хроматическую монадную гамму многогранников, и будут содержать в качестве граней только треугольники и (или) квадраты. Следовательно, мир кристаллов сложен из треугольных, или квадратных граней. О мире кристаллов написано много замечательных книг. И это не удивительно. Мир кристаллов вездесущ. Он также, как и мир волн, пронизывает все явления нашей жизни. Этот мир целиком и полностью соткан из мира симметрии и асимметрии. Он проявляется себя в живой и неживой материи. Мир элементарных частиц, атомы химических элементов, молекулы, минералы, флора и фауна планеты-все это кристаллические структуры. Так, например, в мире органической химии можно вспомнить о молекуле бензоле (С6H6). Атомы углерода располагаются в одной плоскости, образуя правильный шестиугольник.
рис. 8 Цифры 1 и 2 также характеризуют эти формы, как имеющие разную спиральность и показывающие, как из триангул формируется корпускула (битриангула). Из рисунка видно два типа триангул. Одна триангула полностью замкнута, в то время как в другой замыкание осуществляется вектором, являющимся сумой двух других векторов. Эти вектора на рисунке обозначены красным цветом. Такие триангулы будем считать "заряженными". Конечно, это не единственный способ формирования корпускул из триангул. Рисунок характеризует только принципы формирования корпускул из триангул. Но эти принципы являются универсальными, всеобщими. Приведем теперь пример корпускуляров, сформированных из корпускул. Тогда, соединяя битриангулы III и IV через вершины, мы получим![]()
рис. 9 Этот рисунок показывает, как из корпускул формируется монадный цветок -корпускуляр. Это и есть совершенная монадная форма. Этот цветок состоит из трех "одноименных секций", сдвинутых друг относительно друга на 1200. В первом корпускуляре секции представляют собой последовательно соединенные "воронку и вихрь". Соединение этих секций в единый цветок порождает единую "стоячую волну". Система "воронка-вихрь", синхронно двигаясь по кругу, оказалась замкнутой. Во втором корпускуляре эти секции (корпускулы) представляют две "шестеренки", вращающиеся в противоположном направлении, а сам триангуляр оказлся трансформированным в новый корпускуляр, в котором противоположные триангулы сдвинуты друг относительно друг на 600. Эти системы интересны еще и тем, что удалив из оболочки одну, две. или даже 3 триангулы, мы все равно будем получать замкнутую "стоячую волну" ("воронка"-"вихрь"), например,![]()
рис. 10 Однако эти цветки не формируют целостную систему, замкнутую оболочку. Триангулы отделены друг от друга корпускулами, а сформированная ими внутренняя силовая линия оказывается замкнутой. Поэтому они могут вращаться вокруг центрального "цветка". Ниже мы покажем, что такой тип оболочки присутствует в целостном монадном Цветке Жизни. Возможно, что в мире элементарных частиц эти монадные оболочки могут быть родоначальниками лептонного семейства. Существование векторов устремлений, имеющих противоположную направленность (и спиральность, позволяет ввести в рассмотрение положительные и отрицательные векторы (положительные либо отрицательные стрелы оптимальности). Например, можно говорить, что векторы устремлений, характеризующие эволюцию двойственной пары "сфера-куб" можно называть вектором, имеющим отрицательный заряд, в то время как вектор устремлений пары "куб-сфера" могут характеризоваться положительным зарядом. В каждой точке любой монадной формы можно определить свой собственный вектор устремлений, который будет однозначно характеризовать местоположение, собственное значение "веса" этой точки и ориентацию его в пространстве. Любая заряженная монадная форма имеет свою собственную стрелу оптимальности. Любая незаряженная монадная форма также имеет собственную стрелу оптимальности. В последнем случае стрела оптимальности будет характеризовать ось вращения (ось симметрии) уравновешенной монадой формы. Стрела оптимальности в разных научных приложениях может иметь разный смысл (мировая линия, спин, ось вращения, ось симметрии, и т.д.). Хочется отметить в этом направлении работы Бишкекской группы независимых ученых (
Далее идут, мягко говорря, не проверненные и неподтвержденные сведения, даже откровенная мистика...
Так, про теории Гаряева: Волновая мистика П.Гаряева.Обнаружен организм с крупнейшим геномом Новокаледонский вид вилочного папоротника Tmesipteris oblanceolata, произрастающий в Новой Каледонии, имеет геном размером 160,45 гигапары, что более чем в 50 раз превышает размер генома человека. | Тематическая статья: Тема осмысления |
Рецензия: Рецензия на книгу Наука сознания. Современная теория субъективного опыта Майкла Грациано, 2021г | Топик ТК: Зачем нужно изучать «квалиа» |
| ||||||||||||