Теорема о неполноте и доказательство, утверждает примерно следующее: при определенных условиях в любом языке существуют истинные, но недоказуемые утверждения.
Первая теорема Гёделя о неполноте
Во всякой достаточно богатой непротиворечивой теории первого порядка (в частности, во всякой непротиворечивой теории, включающей формальную арифметику), существует такая замкнутая формула F, что ни F, ни -,F не являются выводимыми в этой теории.
Иначе говоря, в любой достаточно сложной непротиворечивой теории существует утверждение, которое средствами самой теории невозможно ни доказать, ни опровергнуть. Например, такое утверждение можно добавить к системе аксиом, оставив её непротиворечивой.
Теорема была доказана Куртом Гёделем в 1931-ом году.
Вторая теорема Гёделя о неполноте
Во всякой достаточно богатой непротиворечивой теории первого порядка (в частности, во всякой непротиворечивой теории, включающей формальную арифметику), формула F, утверждающая непротиворечивость этой теории, не является выводимой в ней.
Иными словами, непротиворечивость достаточно богатой теории не может быть доказана средствами этой теории. Однако вполне может оказаться, что непротиворечивость одной конкретной теории может быть установлена средствами другой, более мощной формальной теории. Но тогда встаёт вопрос о непротиворечивости этой второй теории, и т. д.
Использовать эту теорему для доказательства того, что разумная деятельность не сводится к вычислениям, пытались многие. Например, еще в 1961 году известный логик Джон Лукас (John Lucas) выступал с подобной программой. Его рассуждения оказались довольно уязвимыми - однако он и задачу ставил более широко. Роджер Пенроуз использует несколько другой подход, который излагается в книге полностью, "с нуля.
Учебный фильм можно скачать: videoplayback.mp4