В инете есть настолько много добротных статей, помогающих выработать адекватные представления о "запутанных состояниях", что остается делать наиболее подходящие выборки, строя тот уровень описания, который кажется приемлемым для мировоззренческого сайта.
Тема статьи: многим близка мысль, что все завораживающие причуды запутанных состояний можно было бы объяснить так. Перемешиваем черный и белый шары, не глядя расфасовываем в коробочки и отправляем в разные стороны. Открываем коробочку на одной стороне, смотрим: черный шар, после чего на 100% уверены, что в другой коробочке - белый. Вот и все :)
Цель статьи - не строгое погружение во все особенности понимания "запутанных состояний", а составление системы общих представлений, с пониманием главных принципов. Именно так и стоит относиться ко всему изложенному :)
Вот главное, что нужно знать при рассмотрении явлений “квантовой телепортации”.
Во всех случаях квантовой телепортации речь идет о том, что имеются два объекта, имеющие одно или несколько взаимно связанных состояний.
В опытах, доказывающих мгновенную связь таких состояний обычно используют спин электрона. Вот на примере спина и разберем принцип.
Если один электрон имеет направленность магнитного поля “вверх” то при запутанности с другим электроном магнитное поле второго будет направлено в противоположную сторону (если грубо представить электрон, вращающийся по орбите, то его заряд обязан давать магнитное поле по известному закону электродинамики, вращение или спин в реальности – направление распространения волны электромагнитного поля).
Итак, если спин одного электрона обозначить условно 1, то спин другого будет -1 (в физике число, принятое для обозначения спина электрона, имеет значение 1/2). Раньше, когда еще не говорили о “квантовых запутанностей”, ввели понятие спаривание электронов: при спаривании два электрона образуют общую волновую функцию (общую волну распространения) в разными противоположными спинами. Понятно, что если магнитик одного электрона направлен вверх, то рядом может находится только электрон с противоположным направлением магнитика, тогда они притягиваются в пару.
И если мы насильно раздвинем такие электроны, то их спины так и останутся противоположными. Вот это понятие – самое важное: ни при каких обстоятельствах при измерении спина любого из ранее спаренных электронов, их спины не меняются, т.е. никакой передачи состояния при этом не происходит потому, что все итак уже было определено.
При измерении спина мы вносим свои искажения в волновую функцию потому как любое измерение – это продукт взаимодействия, иначе не получить информацию. При этом никакого изменения в удаленном электроне не происходит, просто мы видим, что раз спине измеряемого электрона был 1, то 100% уверены в том, что спин удаленного будет -1, если только на другой электрон не было какого-то воздействия. Вот и вся песня.
Но есть опыт опыт Бэлла и Эйнштейна-Подольского-Розена (EPR), который типа доказывает, что изменение состояния одного объекта может привести к изменению состояния другого объекта, независимо от расстояния между ними. Т.е. мы изменили первоначальный спин электрона с 1 на -1 и типа разнесенный электрон меняет свой спин так же на противоположный.
Что будет, если мы поменяем спин одного из спаренных электронов? Что будет если мы изменим ориентацию одного из слипшихся магнитиков? Ясно, что другой магнитик останется слипшимся и повернется соответственно.
Что будет, если мы разнесем слипшиеся магнитики и изменим ориентацию другого? Другой никак не почувствует это. Но некоторые физики говорят, что при спаривании у двух электронов возникает общая волновая функция и при разнесении она остается общей, растягиваясь на сколь угодно большое расстояние, обеспечивая состояние слипшихся магнитиков невзирая на расстояние. Никто не может сказать, за счет какого такого вида взаимодействия может поддерживаться сущность такой общей волны. Т.е. в природе нет никаких функций, а есть волна распространения электромагнитного поля, накладывающая сама на себя и при этом обладающая уже свойствами электрона. И при спаривании двух электронов эти волны можно описать некоей волновой функцией. Но при разнесении никакой общей растягивающейся волны быть не может. Т.е. формально по теории можно описать, а в природе это невозможно.
Но опыт-то как-то показывает, что воздействие на состояние спина одного из разнесенных ранее спаренных электронов, воздействует на состояние другого. Чтобы это показать, нужно измерить спин одного электрона и передать эти данные на другой конец, чтобы измерить спин другого. И в опыте оказывается, что во многих случаях есть влияние, а в других нет (в зависимости от некоторой конфигурации приборов измерения, ниже будут подробности). И получится, что изменения происходят мгновенно, раз второй электрон как-то оказывается связанным с другим. За это недавно выдали нобелевскую премию. Никто не понимает как возможна такая связь, но опыт тоже никто не смог опровергнуть.
Вот и вся суть споров о запутанной телепортации. Но нужно сказать, что в физике немало примеров того, как теоретическая интерпретация экспериментальных данных приводит к явно неадекватному реальности результату. И в таких случаях следует больше допускать неверность такой интерпретации, чем допускать опровержении ранее надежно установленных фактов. Эйнштейн понимал незыблемость природных аксиом, но опыт EPR дает основания сомневаться до тех пор, пока не будет точно понята и описана причина такого результата.
В физике существует несколько примеров, когда теоретическая интерпретация экспериментальных данных приводит к явно неадекватному результату. Один из таких примеров - "ультрафиолетовая катастрофа" в теории электромагнитного излучения. В конце 19-го века физики пытались объяснить распределение энергии излучения тела, которое наблюдается при нагревании его до высоких температур. Классическая теория предполагала, что энергия излучения должна расти бесконечно с увеличением частоты излучения, что приводило к явно неадекватным результатам. Это стало известно как "ультрафиолетовая катастрофа". Однако, позднее Максом Планком была предложена новая теория, которая описывала распределение энергии излучения в терминах квантования энергии. По этой теории, энергия излучения распределяется дискретно, а не непрерывно, и зависит от частоты излучения. Эта теория стала известна как квантовая теория излучения и оказалась более точной, чем классическая теория.
Еще один пример неадекватных результатов в физике - это "проблема плоскости вращения" в общей теории относительности Альберта Эйнштейна. Общая теория относительности представляет собой геометрическую теорию гравитации, основанную на идее, что масса и энергия искривляют пространство-время. Согласно этой теории, движение частиц в пространстве-времени определяется геометрией кривизны пространства-времени. Однако, при рассмотрении системы вращающихся тел, например, гравитационно связанных двух тел, вращающихся вокруг общего центра масс, геометрия пространства-времени должна учитывать их вращение. Это приводит к неадекватным результатам, таким как открытие новых путей движения в пространстве-времени, нарушение сохранения энергии и импульса, и другим неожиданным эффектам. Эта проблема до сих пор не полностью решена и является одной из открытых проблем в общей теории относительности.
Еще одним примером является "проблема космологических постоянных" в космологии. В своей работе Эйнштейн предложил космологическую постоянную, чтобы сохранить статичность вселенной. Однако, после того, как Эдвин Хаббл обнаружил расширение вселенной, Эйнштейн отказался от космологической постоянной, считая ее ошибочной. Сегодня, в свете новых наблюдений и экспериментов, космологическая постоянная вновь привлекла внимание, но ее значение остается загадкой и требует дальнейших исследований.
Есть теоретические интерпретации, показывающие наличие дробных зарядов (т.е. составленных меньшими частями, чем минимально возможный заряд), что явно неадекватно реальности. В рамках концепции квазичастиц-фрактонов и конденсата Фрадкина-Вольфла, квазичастицы - это электрически заряженные возбуждения в кристаллической решетке, которые могут двигаться по кристаллической решетке, как обычные частицы. Фрактоны могут иметь дробные заряды, так как они являются квазичастицами, которые не могут передавать полный заряд на другие частицы. Однако, до сих пор не было наблюдено ни одного частицы с дробным зарядом в природе.
Эти примеры показывают, что в физике теоретические модели могут приводить к неожиданным результатам, которые не соответствуют нашему классическому представлению о мире. Однако, благодаря таким результатам, мы можем расширять наше понимание о природе мира и развивать новые теории, которые могут помочь нам лучше понять окружающий нас мир. В физике существуют открытые проблемы и неадекватные результаты, которые вызывают вопросы и требуют дальнейших исследований.
В случае с опытом EPR сам факт измерения может оказывать влияние на результат измерения, что приводит к неоднозначности в интерпретации результатов эксперимента.
А теперь подробнее.
Сразу зададим определяющий контекст. Когда специалисты (а не далекие от данной специфики обсуждатели, пусть даже в чем-то ученые) говорят про спутанность квантовых объектов, то имеют в виду не то, что это образует одно целое с некоей связью, а то, что один объект становится по квантовым характеристикам точно такой-же как другой (но не всем, а тем, которые допускают идентичность в паре по закону Паули, так спин у спутанной пары не идентичен, а взаимно комплементарен). Т.е. это никакая не связь и никакой не процесс взаимодействия, пусть и может описываться общей функцией. Это – характеристика состояния, которую можно “телепортировать” от одного объекта, другому (кстати здесь тоже повально часто превратное толкование слова “телепортировать”). Если сразу не определиться в этом, то можно зайти очень далеко в мистику. Поэтому, в первую очередь, все, кто интересуется вопросом, должны четко быть уверенны в том, что именно имеется в виду под “спутанностью”.
То, ради чего была затеяна эта статья сводится к одному вопросу. Отличие поведения квантовых объектов от классических проявляется в единственно известном пока методе проверки: соблюдается или нет определенное условие проверки - неравенство Белла (ниже подробнее), которое для "запутанных" квантовых объектов ведет себя так, как будто существует связь между посланным в разные стороны объектами. Но связь как бы не реальная, т.к. ни информацию, ни энергию передать невозможно.
Мало того, эта связь не зависит ни от расстояния, ни от времени: если два объекта были "спутаны", то, независимо от сохранности каждого из них, второй ведет себя так, как будто связь все же существует (хотя наличие такой связи можно обнаружить только при измерении обоих объектов, такое измерение можно разнести во времени: сначала измерить, потом уничтожить один из объектов, а второй измерить позже. Например, см. Р.Пенроуз Тени Разума). Понятно, что любой вид "связи" становится трудно понимаемым в этом случае и вопрос встает так: может ли быть таким закон вероятности выпадения измеряемого параметра (который описывается волновой функцией), чтобы на каждом из концов неравенство не нарушалось, а при общей статистике с обоих концов - нарушалось - и без какой-либо связи, естественно, кроме связи актом общего возникновения.
Заранее дам ответ: да, может, при условии, что эти вероятности - не "классические", а оперируют комплексными переменными для описания "суперпозиции состояний" - как бы одновременного нахождения всех возможных состояний с определенной вероятностью для каждого.
Для квантовых объектов описатель их состояния (волновая функция) - именно таков. Если говорить об описании положения электрона, то вероятность его нахождения определяет топологию "облака" - форму электронной орбитали. В чем состоит различие между классикой и квантами?
Представим себе быстро вращающееся велосипедное колесо. Где-то на нем прикреплен красный диск бокового отражателя фар, но мы видим лишь более плотную тень размытости в этом месте. Вероятность того, что сунув палку в колесо, отражатель остановится в определенном положении от палки просто определяема: одна палка - одно какое-то положение. Сунем две палки, но остановит колесо только та, которая окажется чуть раньше. Если мы будем стараться сунуть палки совершенно одновременно, добиваясь, чтобы не было времени между концами палки, соприкоснувшимися с колесом, то появится некоторая неопределенность. В "не было времени" между взаимодействиями с сутью объекта - вся суть понимания квантовых чудес :)
Скорость "вращения" того, что определяет форму электрона (поляризации - распространения электрического возмущения) равна предельной скорости, с которой вообще что-то может распространяться в природе (скорости света в вакууме). Мы знаем вывод теории относительности: в этом случае время для этого возмущения становится нулевым: нет ничего в природе, что могло бы осуществиться между любыми двумя точками распространения этого возмущения, времени для него не существует. Это значит, что возмущение способно взаимодействовать с любыми другими влияющими на него "палками" без затраты времени - одновременно. И вероятность того, какой результат будет получен в конкретной точке пространства при взаимодействии, должен вычисляться вероятностью, учитывающей этот релятивистский эффект: Из-за того, что для электрона нет времени, он не способен выбрать ни малейшего отличия между двумя "палками" при взаимодействии с ними и делает это одновременно со своей "точки зрения": электрон проходит в две щели одновременно с разной плотностью волны в каждой и потом интерферирует между самим собой как две наложившиеся волны.
Вот в чем различие в описаниях вероятностей в классике и квантах: квантовые корреляции "сильнее" классических. Если результат выпадения монетки зависит от множества влияющих факторов, но в целом они однозначно детерминированы так, что стоит только сделать точный автомат для выбрасывания монеток, и они станут падать одинаково, - случайность "исчезла". Если же сделать автомат, тыкающий в элекронное облако, то результат определится тем, что каждый тычек будет попадать во что-то всегда, только с разной плотностью сущности электрона в этом месте. Других факторов, кроме статического распределения вероятности нахождения измеряемого параметра в электроне нет и это - уже детерминизм совсем другого рода, чем в классике. Но это - тоже детерминизм, т.е. он всегда вычисляем, воспроизводим, только с особенностью, описываемой волновой функцией. При этом такой квантовый детерминизм касается лишь целостного описания волны кванта. Но, в виду отсутствия собственного времени для кванта, он взаимодействует абсолютно случайно, т.е. нет никакого критерия заранее предсказать результат измерения совокупности его параметров. В этом смысле (в классическом представлении) он абсолютно недетерминирован.
Электрон реально и в самом деле существует в виде статического образования (а не крутящейся по орбите точки) - стоячей волны электрического возмущения, у которой существует еще один релятивистский эффект: перпендикулярно основной плоскости "распространения" (понятно почему в кавычках :) электрического поля возникает также статическая область поляризации, которая способна влиять на такую же область другого электрона: магнитный момент. Электрическая поляризация в электроне дает эффект электрического заряда, его отражение в пространстве в виде возможности влияния на другие электроны - в виде магнитного заряда, который не бывает сам по себе без электрического. И если в электронейтральном атоме электрические заряды скомпенсированы зарядами ядер, то магнитные могут оказаться ориентированы в одну сторону и мы получим магнит. Более глубокие представления об этом - в статье Вакуум, кванты, вещество.
То, в какую сторону будет направлен магнитный момент электрона - называется спином. Т.е. спин - проявление способа наложения волны электрической деформации на себя с образованием стоячей волны. Числовое значение спина соответствует характеристике наложения волны на себя. У электрона: +1/2 или -1/2 (знак символизирует направление бокового смещения поляризации - "магнитный" вектор).
Если на внешнем электронном слое атома есть один электрон и вдруг к нему присоединяется еще один (образование ковалентной связи), то они, как два магнитика, тут же встают в позицию 69, образуя спаренную конфигурацию с энергией связи, которую нужно разорвать, чтобы опять разделить эти электроны. Общий спин такой пары - 0.
Спин - тот параметр, который играет важную роль при рассмотрении запутанных состояний. У свободно распространяющегося электромагнитного кванта суть условного параметра "спин" все та же: ориентация магнитной составляющей поля. Но она уже не статична и не приводит к возникновению магнитного момента. Чтобы ее зафиксировать нужен не магнит, а щель поляризатора.
Для затравки представлений о квантовых запутанностях предлагаю прочесть популярную и небольшую статью Алексея Левина: Страсть на расстоянии. Пожалуйста, перейдите по ссылке и прочтите до того, как продолжать :)
Итак, конкретные параметры измерения реализуются только при измерении, а до того они существовали в виде того распределения вероятностей, которое составляло зримую макромиром статику релятивистких эффектов динамики распространения поляризации микромира. Понять суть происходящего в квантовом мире - означает проникнуться в проявления таких релятивистких эффектов, которые на деле придают квантовому объекту свойства быть одновременно в разных состояниях до момента конкретного измерения.
"Запутанное состояние" это - вполне детерминированное состояние двух частиц, обладающих настолько одинаковой зависимостью описания квантовых свойств, что на обоих концах проявляются согласованные корреляции, в силу особенностей сути квантовой статики, имеющих согласованное поведение. В отличие от макро статистики, в квантовой статистике возможно сохранение таких корреляций у разнесенных в пространстве и времени ранее согласованных по параметрам объектов. Это проявляется в статистике выполнения неравенств Белла.
Чем отличается волновая функция (наше абстрактное описание) незапутанных электронов двух атомов водорода ( при том, что ее параметрами будут общепринятые квантовые числа)? Ничем, кроме того, что спин неспаренного электрона случаен без нарушения неравенств Белла. В случае образования спаренной шаровой орбитали в атоме гелия, или в ковалентных же связях двух атомов водорода, с образованием молекулярной орбитали, обобщенной двумя атомами, параметры двух электронов оказываются взаимно согласованными. Если запутанные электроны расщепить, и они начинают движение в разные стороны, то в их волновой функции появляется параметр, описывающий смещение плотности вероятности в пространстве от времени - траекторию. И это вовсе не означает размазанности функции в пространстве просто потому, что вероятность нахождения объекта становится нулевой на некотором от него удалении и позади не остается ничего, чтобы указывало на вероятность нахождения электрона. Тем более это очевидно в случае разнесения пары во времени. Т.е. возникают два локальных и независимых описателя, смещающихся в противоположных направлениях частиц. Хотя все еще можно использовать один общий описатель, - право того, кто формализует :)
Кроме всего, окружение частиц не может оставаться безучастным и так же подвергается модификации: описатели волновой функции частиц окружения изменяются и участвуют в результирующей квантовой статистике своим влиянием (порождая такие явления как декогеренция). Но обычно почти никому в голову не приходит описывать это общей волновой функцией, хотя и это возможно.
Во множестве источников можно подробно ознакомиться с этими явлениями.
М.Б.Менский в статье пишет:
"Одна из целей данной статьи ... обосновать точку зрения, что существует формулировка квантовой механики, в которой не возникает никаких парадоксов и в рамках которой можно ответить на все вопросы, которые обычно задают физики. Парадоксы возникают лишь тогда, когда исследователь не удовлетворяется этим "физическим" уровнем теории, когда он ставит такие вопросы, которые в физике ставить не принято, другими словами, — когда он берет на себя смелость попытаться выйти за пределы физики. ...Специфические черты квантовой механики, связанные с запутанными состояниями, впервые были сформулированы в связи с ЭПР-парадоксом, однако в настоящее время они не воспринимаются как парадоксальные. Для людей, профессионально работающих с квантовомеханическим формализмом (т.е. для большинства физиков) нет ничего парадоксального ни в ЭПР-парах, ни даже в очень сложных запутанных состояниях с большим числом слагаемых и большим числом факторов в каждом слагаемом. Результаты любых опытов с такими состояниями, в принципе, легко просчитываются (хотя технические трудности при расчете сложных запутанных состояний, конечно, возможны)."
Хотя, надо сказать, в рассуждениях о роли сознания, осознанного выбора в квантовой механике Менский оказывается тем самым берущим " на себя смелость попытаться выйти за пределы физики ". Это напоминает попытки подступиться к явлениям психики Р.Пенроуза. Как квантовый профессионал Менский хорош, но в механизмах психики он, как и Пенроуз - наивен.
Очень кратко и условно (только для схватывания сути) об использовании запутанных состояний в квантовой криптографии и телепортации (т.к. именно это поражает воображение благодарных зрителей).
Итак, криптография. Нужно передать последовательность 1001
Используем два канала. По первому пускаем запутанную частицу, по второму - информацию о том, как нужно интерпретировать полученные данные в виде одного бита.
Предположим, что имеется альтернатива возможного состояния используемого квантовомеханического параметра спин в условных состояниях: 1 или 0. При этом вероятность их выпадений с каждой выпущенной парой частиц - воистину случайна и не передает никакого смысла.
Первая передача. При измерении здесь вышло, что у частицы состояние 1. Значит у другой - 0. Чтобы на том конце получить требуемую единицу передаем бит 1. Там мерят состояние частицы и, чтобы узнать, что оно означает, складывают с переданной 1. Получают 1. Заодно проверяют по белу, что спутанность не была нарушена, т.е. инфа не перехвачена.
Вторая передача. Вышло опять состояние 1. У другой 0. Передаем инфо - 0. Складываем, получаем требуемую 0.
Третья передача. Вышло состояние здесь 0. Там, значит - 1. Чтобы получить 0, передаем 0. Складываем, получаем 0 (в младшем разряде).
Четвертое. Здесь - 0, там - 1, нужно чтобы было интерпретировано как 1. Передаем инфу - 0.
Вот в таком принципе. Прехват инфо канала бесполезен из-за совершенно некоррелируемой последовательсти (шифрование ключем состояния первой частицы). Перехват запутанного канала - нарушает прием и обнаруживается. Статистика передачи с обоих концов (на приемном конце имеют все нужные данные по передаваемому концу) по Беллу определяет корректность и неперехваченность передачи.
В этом состоит и телепортация. Никакого произвольного навязывания состояния частице там не происходит, а происходит только предсказание того, какое будет это состояние после того (и только после того) как здесь частица будет выведена из связи измерением. И тогда говорят типа, что произошла передача квантового состояния с разрушением комплементарного состояния в исходной точке. Получив там инфу о состоянии здесь, можно тем или иным способом скорректировать квантовомеханический параметр так, чтобы он оказался идентичным такому здесь, но здесь его уже не будет, и говорят о выполнении запрета на клонирование в связанном состоянии.
Похоже, что никакие аналоги этих явлений в макромире, никакие шары, яблоки и т.п. от классической механики не могут послужить для интерпретации проявления такого характера квантовых объектов (на самом деле принципиальных препятствий этому нет, что будет показано ниже в итоговой ссылке). В этом - главная трудность для тех, кто хочет получить зримое "объяснение". Это не значит, что такое не представляемо, как заявляется подчас. Это значит, что нужно довольно кропотливо поработать над релятивистками представлениями, которые играют определяющую роль в квантовом мире и связывают мир квантов с макро миром.
Но и это не обязательно. Вспомним главную задачу представления: каким должен быть закон материализации измеряемого параметра (который описывается волновой функцией), чтобы на каждом из концов неравенство не нарушалось, а при общей статистики с обоих концов - нарушалось. Существует множество интерпретаций для понимания этого, использующих вспомогательные абстракции. Они говорят об одном и том же разными языками таких абстракций. Из них две - наиболее весомые по разделяемой среди носителей представлений корректности. Надеюсь, что после сказанного будет понятно, что имеется в виду :)
Копенгагенская интерпретация из статьи про парадокс Эйнштейна — Подольского — Розена:
"(ЭПР-парадокс) — кажущийся парадокс... В самом деле, представим себе, что на двух планетах в разных концах Галактики есть две монетки, выпадающие всегда одинаково. Если запротоколировать результаты всех подбрасываний, а потом сравнить их, то они совпадут. Сами же выпадания случайны, на них никак нельзя повлиять. Нельзя, например, договориться, что орёл — это единица, а решка — это ноль, и передавать таким образом двоичный код. Ведь последовательность нулей и единицы будет случайной и на том и на другом «конце провода» и не будет нести никакого смысла.
Получается, что парадоксу есть объяснение, логически совместимое и с теорией относительности, и с квантовой механикой.
Можно подумать, что это объяснение слишком неправдоподобно. Это настолько странно, что Альберт Эйнштейн никогда не поверил в «бога, играющего в кости». Но тщательные экспериментальные проверки неравенств Белла показали, что в нашем мире есть-таки нелокальные случайности.
Важно подчеркнуть одно уже упомянутое следствие этой логики: измерения над запутанными состояниями только тогда не будут нарушать теорию относительности и причинность, если они истинно случайны. Не должно быть никакой связи между обстоятельствами измерения и возмущением, ни малейшей закономерности, потому что в противном случае появилась бы возможность мгновенной передачи информации. Таким образом, квантовая механика (в копенгагенской интерпретации) и существование запутанных состояний доказывают наличие индетерминизма в природе."
В статистической интерпретации это показывается через понятие "статистических ансамблей" (тот же источник):
С точки зрения статистической интерпретации, действительными объектами изучения в квантовой механике являются не единичные микрообъекты, а статистические ансамбли микрообъектов, находящихся в одинаковых макроусловиях. Соответственно, фраза «частица находится в таком-то состоянии» на самом деле означает «частица принадлежит такому-то статистическому ансамблю» (состоящему из множества аналогичных частиц). Поэтому выбор в исходном ансамбле того или иного подансамбля существенно меняет состояние частицы, даже если при этом не происходило непосредственного воздействия на неё.
В качестве простейшей иллюстрации рассмотрим следующий пример. Возьмём 1000 окрашенных монет и бросим их на 1000 листов бумаги. Вероятность того, что на случайно выбранном нами листе отпечатался «орёл», равна 1 / 2. Между тем для листов, на которых монеты лежат «решкой» вверх, та же самая вероятность равна 1 — то есть у нас имеется возможность косвенно устанавливать характер отпечатка на бумаге, глядя не на сам лист, а только на монету. Однако ансамбль, связанный с таким «косвенным измерением», совершенно отличен от исходного: он содержит уже не 1000 листов бумаги, а лишь около 500!
Таким образом, опровержение соотношения неопределённостей в «парадоксе» ЭПР было бы действительным лишь в том случае, если бы для исходного ансамбля оказался возможным одновременный выбор непустого подансамбля и по признаку импульса, и по признаку пространственных координат. Однако как раз невозможность такого выбора и утверждается соотношением неопределённостей! Иначе говоря, «парадокс» ЭПР на деле оказывается порочным кругом: он заранее предполагает неверность опровергаемого факта.
Вариант со «сверхсветовым сигналом» от частицы A к частице B также основан на игнорировании того обстоятельства, что распределения вероятностей значений измеряемых величин характеризуют не конкретную пару частиц, а содержащий огромное количество таких пар статистический ансамбль. Тут в качестве аналогичной можно рассмотреть ситуацию, когда окрашенная монета бросается на лист в темноте, после чего лист вытаскивается и запирается в сейф. Вероятность того, что на листе отпечатался «орёл» apriori равна 1 / 2. И то обстоятельство, что она немедленно превратится в 1, если мы зажжём свет и убедимся, что монета лежит «решкой» вверх, нисколько не свидетельствует о способности нашего взгляда мистическим образом влиять на запертые в сейфе предметы.
Подробнее: А.А.Печенкин Ансамблевые
интерпретации квантовой механики в США и СССР.
И еще одна интерпретация из
Модальная интерпретация ван Фраассена исходит из того, что состояние физической системы изменяется только каузально, т.е. в соответствии с уравнением Шредингера, однако это состояние не детерминирует однозначно значения физических величин, обнаруживаемые при измерении.
...
Поппер приводит здесь свой излюбленный пример: детский биллиард (уставленная иголками доска, по которой сверху скатывается металлический шарик, символизирующий физическую систему, — сам биллиард символизирует экспериментальное устройство). Когда шарик наверху биллиарда, мы имеем одну диспозицию, одну предрасположенность достичь какой-либо точки внизу доски. Если же мы зафиксировали шарик где-то в середине доски, мы изменили спецификацию эксперимента и получили новую предрасположенность. Квантово-механический индетерминизм сохраняется здесь в полном объеме: Поппер оговаривает, что биллиард не представляет собой механическую систему. Мы лишены возможности прослеживать траекторию шарика. Но “редукция волнового пакета” — это не акт субъективного наблюдения, это сознательное переопределение экспериментальной ситуации, сужение условий опыта.
Подведем общее резюме фактов
1. Несмотря на абсолютную случайность выпадения парамерта при измерении в массе возникающих спутанных пар частиц, в каждой такой паре проявляется согласованность: если одна частица в паре оказывается со спином 1, то другая частица в паре - со спином противоположным. Это в принципе понятно: раз в спаренном состоянии не может быть двух частиц, имеющих одинаковый спин в одном энергетическом состоянии, то при их расщеплении, если согласованность сохраняется, то и спины оказываются все так же согласованными. Стоит определить спин одной, как станет известен спин другой, при том, что случайность спина в измерениях с любой из сторон - абсолютная.
Коротко проясню невозможность полностью одинаковости состояний двух частиц в одной месте пространства-времени, которая в модели строения электронной оболочки атома называется принципом Паули, а в квантовомеханическом рассмотрении согласованных состояний - принципом невозможности клонирования запутанных объектов.
Есть нечто (пока непознанное), реально препятствующее возможности кванту или соответствующей ему частице пребывать в одном локальном состоянии с другим - полностью идентичным по квантовым параметрам. Это реализуется, например, в эффекте Казимира, когда виртуальные кванты между пластинами могут иметь длину волны не более зазора. И особенно наглядно это реализуется в описании атома, когда электроны данного атома не могут иметь во всем идентичные параметры, что аксиоматически формализовано принципом Паули.
На первом, ближайшем слое могут находится только 2 электрона в виде сферы (s-электроны). Если их два, то они - с разными спинами и спарены (запутаны), образуя общую волну с энергией связи, которую нужно приложить, чтобы разорвать эту пару.
Во втором, более удаленном и более энергетическом уровне могут быть 4 "орбитали" по два спаренных электрона в виде стоячей волны формой как объемная восьмерка (p-электроны). Т.е. большая энергия занимает большее пространство и позволяет соседствовать уже нескольким связанным парам. От первого слоя второй отличается энергетически на 1 возможный дискрет энергетического состояния (более внешние электроны, описывая пространственно большее облако, обладают и большей энергией).
Третий слой
уже пространственно позволяет иметь 9 орбит в форме четырехлистника (d-электроны), четвертый - 16 орбит - 32 электрона, форма
которых тоже
Формы электронных облаков:
а – s-электроны; б – р-электроны; в – d-электроны.
Вот такой набор дискретно различающихся состояний - квантовые числа - характеризуют возможные локальные состояния электронов. И вот что из этого получается.
Когда два
электрона с разными спинами одного энергетического уровня (хотя это принципиально не обязательно:
Способ
получения запутанных электронов через их взаимодействие описан:
2. При статистике измерений с обеих сторон взаимная согласованность случайностей в парах может приводить к нарушению неравенства Белла в определенных условиях. Но не за счет использования некоей особой, пока непознанной квантовомеханической сущности.
Следующая небольшая статья (на основе представлений, изложенных Р.Пнроузом) позволяет проследить (показать принцип, пример) как это возможно: Относительность неравенств Белла или Новый ум голого короля. Так же это же показано в работе А.В.Белинского, опубликованной в Успехи физических наук: Теорема белла без предположения о локальности. Дргуая работа А.В.Белинского для размышления заинтересовавшимися: Теорема Белла для трихотомных наблюдаемых, а так же обсуждение с д.ф.-м.н., проф., акад. Валерием Борисовичем Морозововым (общепризнанный корифей форумов физфака ФРТК-МФТИ и "дубинушки"), где Морозов предлагает к рассмотрению обе эти работы А.В.Белинского: Опыт Аспекта: вопрос к Морозову. И в дополнение темы о возможности нарушений неравенств Белла без введения какого-либо дальнодействия: Моделирование по неравенству Белла.
Обращаю внимание, что "Относительность неравенств Белла или Новый ум голого короля", как и "Теорема белла без предположения о локальности" в контексте данной статьи не претендуют на описание механизма квантовомеханической запутанности. Задача показана в последней фразе первой ссылки: "Ссылаться на нарушение неравенств Белла, как на бесспорное опровержение любой модели локального реализма, нет оснований." т.е. граница ее использования - теорема, озвученная вначале: "Могут существовать модели классической локальности, в которых будут нарушаться неравенства Белла.". Об этом - дополнительные пояснения в обсуждении.
Приведу и модель от себя.
"Нарушение локального реализма" - всего лишь релятивистский эффект.
Никто (нормальный) не спорит с тем, что для системы, движущейся с предельной скоростью (скорость света в вакууме) нет ни пространства, ни времени (преобразование Лоренца в этом случае дает нулевое время и пространство), т.е. для кванта он находится сразу и здесь и там, каким бы далеким ни было это там.
Понятно, что спутанные кванты обладают вот такой своей точкой отсчета. А электроны - те же кванты в состоянии стоячей волны, т.е. существующие здесь и там сразу на все время существования электрона.
Все свойства квантов оказываются предрешенными для нас, тех, кто воспринимает это извне вот почему. Мы состоящим, в конечном счете из квантов, которые и здесь и там. Для них скорость распространения взаимодействия (предельная скорость) - бесконечно высока. Но все эти бесконечности разные также как в разной длине отрезков хоть и бесконечное число точек у каждого, но соотношение этих бесконечностей дает соотношение длин. Вот как для на нас появлятеся время и пространство.
Для нас в экспериментах локальный реализм нарушается, для квантов - нет.
Но это расхождение никак не влияет на реальность потому, что мы не можем воспользоваться такой бесконечной скоростью практически. Ни информация, ни, тем более материя, не передается бесконечно быстро при "квантовой телепортации".
Так что все это - приколы релятивистских эффектов, не более того. Их можно использовать в квантовой криптографии или еще как-то, ни нельзя использовать для реального дальнодействия.
Смотрим зрительно суть того, что показывают неравенства Белла.
1. Если ориентация измерителей на обоих концах одинаковая, то результат измерения спина на обоих концах всегда будет противоположным.
2. Если ориентация измерителей противоположная, то результат будет совпадающим.
3. Если ориентация левого измерителя отличается от ориентации правого менее, чем на определенный угол, то будет реализовцваться пункт 1 и совпадения окажутся в пределах вероятности, предсказанной Беллом для независимых частиц.
4. Если угол превышает, то - пункт 2 и совпадения окажутся больше вероятности, предсказанной Беллом.
Т.е. при меньшем угле мы будем получать преимущественно противоположные значения спинов, а при большем - преимущественно совпадающие.
Почему так происходит со спином можно представить, имея в виду, что спин электрона - магнитик, и измеряется так же ориентацией магнитного поля (или в свободном кванте спин - направление поляризации и измеряется ориентацией щели, через которую должна прийтись плоскость поворота поляризации).
Ясно, что отправив магнитики, которые были вначале сцеплены и при отправке сохранили свою взаимную ориентацию, мы магнитным полем при измерении будем влиять на них (доворачивая в ту или иную сторону) так, как это происходит в квантовых парадоксах.
Понятно, что встречая магнитное поле (в том числе спин другого электрона) спин обязательно ориентируется в соответствии с ним (взаимно противоположно в случае со спином другого электрона). Поэтому и говорят, что "ориентация спина возникает лишь в ходе измерения", но при этом она зависит от своего первоначального положения (в какую сторону довращаться) и направления влияния измерителя.
Ясно, что никаких дальнодействий для этого не требуется, так же как не требуется заранее прописывать такое поведение в первоначальном состоянии частиц.
У меня есть основания полагать, что пока что при измерениях спина отдельных электронов не учитываются промежуточные состояния спина, а лишь преимущественно - по измерительному полю и против поля. Примеры методов:
Приведенная модель, конечно, упрощена (в квантовых явлениях спин - не совсем те вещесвтенные магнитики, хотя именно они обеспечивают все наблюдаемые магнитные явления) и не учитывает множество нюансов. Поэтому он - не является описателем реального явления, а показывает только возможный принцип. И еще он показывает как плохо просто доверяться описательному формализму (формулам) без понимания сути происходящего.
При этом теорема Белла верна в формулировке из стати Аспека: "невозможно найти теорию с дополнительным параметром, удовлетворяющую общему описанию, которая воспроизводит все предсказания квантовой механики." а вовсе не в формулировке Пенроуза: " оказывается, что воспроизвести предсказания квантовой теории таким путем (неквантовым) невозможно.". Понятно, чтобы доказать теорему по Пенроузу, нужно доказать, что никакими моделями, кроме квантовомеханического эксперимента, нарушения неравенств Белла не возможно.
Это - несколько утрированный, можно сказать вульгарный пример интерпретации, просто для того, чтобы показать, как можно обмануться в таких результатах. Но наведем ясный смысл на то, что хотел доказать Белл и что получается на самом деле. Белл создал опыт, показывающий, что в запутанности нет заранее существующего "алгоритма", заранее заложенной корреляции (на чем настаивали в то время противники, говоря о том, есть некие скрытые параметры, определяющие такую корреляцию). И тогда вероятности в его опытах должны быть выше, чем вероятность на самом деле случайного процесса (почему хорошо описано ниже).
НО на самом-то деле просто имеют одинаковые вероятностные зависимости. Что это значит? Это значит, что вовсе не предопределенная, заданная связь между фиксацией параметра измерением имеет быть место, а такой результат фиксации происходит от того, что процессы обладают одинаковой (комплементарной) вероятностной функцией (что, в общем-то прямо проистекает из квантовомеханических понятий), суть которой - реализация параметра при фиксации, который был не определен в виду отсутствия в его "системе отсчета" пространства и времени в силу максимально возможной динамики его существования (релятивистский эффект, формализуемый Лоренцовыми преобразованиями, см. Вакуум, кванты, вещество).
Вот как описывает методологическую суть опыта Белла Брайан Грин в книге Ткань космоса. У него каждый из двоих игроков получили множество ящичков, каждый с тремя дверцами. Если первый игрок открывает ту же дверцу, что и второй в ящичке с одинаковым номером, то он вспыхивает одинаковым светом: красным или синим.
Первый игрок Скалли предполагает, что это обеспечивается заложенной в каждую пару программой цвета вспышки в зависимости от дверцы, второй игрок Малдер считает, что вспышки следуют равновероятно, но как-то связаны (нелокальным дальнодействием). По мнению второго игрока все решает опыт: если программа - то вероятность одинаковых цветов при случайном окрывании разных дверок должна быть больше 50%, вопреки истиной случайной вероятности. Он привел пример почему:
Просто для конкретности представим, что программа для сферы в отдельной коробочке производит синий (1-я дверца), синий (2-я дверца) и красный (3-я дверца) цвета. Теперь, поскольку мы оба выбираем одну из трех дверок, всего имеется девять возможных комбинаций дверок, которые мы можем выбрать для открывания для данной коробочки. Например, я могу выбрать верхнюю дверку на моей коробочке, тогда как ты можешь выбрать боковую дверку на твоей коробочке; или я могу выбрать фронтальную дверку, а ты можешь выбрать верхнюю дверку; и так далее."
"Да, конечно." – Скалли подскочила. – "Если мы назовем верхнюю дверку 1, боковую дверку 2, а фронтальную дверку 3, то девять возможных комбинаций дверок это просто (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) и (3,3)."
"Да, все верно," – продолжает Малдер. – "Теперь важный момент: Из этих девяти возможностей отметим, что пять комбинаций дверок – (1,1), (2,2), (3,3), (1,2) и (2,1) – приводят к тому результату, что мы видим, как сферы в наших коробочках вспыхивают одинаковыми цветами.
Первые три комбинации дверок те самые, в которых мы выбираем одинаковые дверки, и, как мы знаем, это всегда приводит к тому, что мы видим одинаковые цвета. Остальные две комбинации дверок (1,2) и (2,1) приводят к тем же самым цветам, поскольку программа диктует, что сферы будут мигать одним цветом – синим – если или дверка 1 или дверка 2 открыты. Итак, поскольку 5 больше, чем половина от 9, это значит, что для более чем половины – более чем 50 процентов – возможных комбинаций дверок, которые мы можем выбрать для открывания, сферы будут вспыхивать одинаковым цветом."
"Но подожди," – протестует Скалли. – "Это только один пример особой программы: синий, синий, красный. В моем объяснении я предполагала, что коробочки с разными номерами могут и в общем случае будут иметь разные программы."
"В действительности, это не имеет значения. Вывод действует для любых из возможных программ.
И это - в самом деле так, если имеем дело с программой. Но вовсе не так, если имеем дело со случайными зависимостями для многих опытов, но каждая из этих случайностей имеет один и тот же вид в каждом опыте.
В случае электронов, когда они были вначале связаны в пару, что обеспечивает их полностью зависимые спины (взаимно противоположные) и разлетелись, эта взаимозависимость, конечно же, сохраняется при полной общей картине истинной вероятности выпаданий и в том, что заранее сказать как сложились спины двух электронов в паре невозможно до определения одного из них, но они "уже" (если так можно сказать в отношении того, что не имеет своей метрики времени и пространства) имеют определенное взаиморасположение.
Далее в книге Брайан Грина:
есть способ изучить, не вступили ли мы неосторожно в конфликт с СТО. Общим для материи и энергии свойством является то, что они, переносясь с места на место, могут передавать информацию. Фотоны, путешествуя от радиопередающей станции к вашему приемнику, переносят информацию. Электроны, путешествуя через кабели Интернета к вашему компьютеру, переносят информацию. В любой ситуации, где нечто – даже нечто неидентифицированное – подразумевается движущимся быстрее скорости света, безошибочным тестом будет спросить, передает ли оно или, как минимум, может ли оно передавать информацию. Если ответ нет, проходят стандартные рассуждения, что ничто не превышает скорости света и СТО остается неоспоренной. На практике этот тест физики часто применяют для определения, не нарушает ли некоторый тонкий процесс законы СТО. Ничто не пережило этот тест.
Что же касается подхода Р.Пенроуза и т.п. интерпретаторов, то из его работы Penrouz.djvu постараюсь выделить то основополагающее отношение (мировоззрение), которое напрямую приводит к мистическим взглядам о нелокальности (с моими комментарниями - черным цаетом):
Необходимо было отыскать способ,
который позволил бы отделять истину от предположений в математике, — некую
формальную процедуру, применив которую можно было бы с уверенностью сказать, является
данное математическое утверждение истинным или нет (возражение см. Метод Аристотеля и Истина, критерии истины). Пока эта задача должным образом
не разрешена, вряд ли можно всерьез надеяться на успех в решении других, значительно
более сложных, задач — тех, что касаются природы движущих миром сил, какие бы
взаимоотношения эти самые силы с математической истиной ни связывали. Осознание того, что
ключом к пониманию Вселенной является неопровержимая математика, является, пожалуй,
первым из важнейших прорывов в науке вообще. О математических истинах самого разного рода догадывались еще древние египтяне
и вавилоняне, однако первый камень в фундамент математического понимания...
... людей впервые появилась возможность формулировать достоверные и заведомо
неопровержимые утверждения — утверждения, истинность которых не вызывает сомнений и сегодня,
несмотря на то что наука с тех времен шагнула далеко вперед. Людям впервые приоткрылась
поистине вневременная природа математики.
Что же это такое — математическое доказательство? В математике доказательством
называют безупречное рассуждение, использующее лишь приемы чистой логики (чистой логики не существует. Логика - аксиоматическая формализация найденных в природе закономерностей и взаимосвязей) позволяющее сделать однозначный вывод о справедливости того или иного математического утверждения на основании справедливости каких-либо других математических
утверждений, либо заранее установленной аналогичным образом, либо не требующей
доказательства вовсе (особые элементарные утверждения, истинность которых, по общему мнению,
самоочевидна, называются аксиомами). Доказанное математическое утверждение принято
называть теоремой. Вот тут я его не понимаю: есть ведь и просто высказанные, но не доказанные теоремы.
... Объективные математические понятия следует представлять как вневременные объекты; не нужно думать,
будто их существование начинается в тот момент, как только они в том или ином виде
возникают в человеческом воображении.
... Таким образом, математическое существование отличается не только от существования
физического, но и от того существования, которым способно наделить объект наше
сознательное восприятие. Тем не менее оно явно связано с двумя последними формами
существования — т. е. с физическим и ментальным существованием связь - вполне физическое понятие, что имеет в виду здесь Пенроуз? — причем соответствующие
связи настолько же фундаментальны, насколько и загадочны.
Рис. 1.3. Три «мира» — платоновский математический, физический и ментальный — и три связывающие их фундаментальные загадки...
... Итак, согласно изображенной на рис. 1.3 схеме, весь физический мир управляется
математическими законами. В последующих главах книги мы увидим, что имеются веские
(хоть и неполные) свидетельства в поддержку такой точки зрения. Если верить этим
свидетельствам, то приходится признать, что все, существующее в физической Вселенной, вплоть
до самых мельчайших мелочей, и в самом деле управляется точными математическими
принципами — может быть, уравнениями. Тут я просто тихо балдею....
...Если это так, то и наши с вами физические действия целиком и полностью подчинены
такому всеобщему математическому контролю, хотя «контроль» этот все же допускает
определенную случайность в поведении, управляемую строгими вероятностными принципами.
Многие люди от таких предположений начинают чувствовать себя очень неуютно; у
меня и у самого, признаться, эти мысли вызывают некоторое беспокойство.
... Возможно,
в некотором смысле три мира вовсе не являются отдельными сущностями, но лишь отражают
различные аспекты некоей более фундаментальной ИСТИНЫ (выделил я), описывающей мир, как целое, —
истины, о которой в настоящее время мы не имеем ни малейшего понятия. - чистая мистика....
.................
Оказывается даже, что на экране имеются области, не достижимые для частиц, испускаемых
источником, несмотря на тот факт, что частицы могли вполне успешно попадать в эти
области, когда была открыта лишь одна из щелей! Хотя пятна появляются на экране по одному
в локализованных положениях и хотя каждой встрече частицы с экраном можно сопоставить
определенный акт испускания частицы источником, поведение частицы между источником
и экраном, включая неоднозначность, связанную с наличием двух щелей в барьере,
подобно поведению волны, при котором волна-частица при столкновении с экраном чувствует
сразу обе щели. Более того (и это особенно важно для наших непосредственных целей),
расстояние между полосами на экране соответствует длине волны Л нашей волны-частицы,
связанной с импульсом частиц р прежней формулой ХХХХ.
Всё это вполне возможно, скажет трезвомыслящий скептик, но это еще не заставляет
нас проводить такое абсурдно выглядящее отождествление энергии-импульса с каким-то
оператором! Да, именно так и хочется сказать: оператор - лишь формализм для описания явления в определенных его рамках, а не тождество с явлением.
Конечно, не заставляет, но должны ли мы отворачиваться от чуда, когда оно
является нам?! В чем же состоит это чудо? Чудом является то, что эта кажущаяся
абсурдность экспериментального факта (волны оказываются частицами, а частицы — волнами)
может быть приведена в систему с помощью красивого математического формализма, в
котором импульс действительно отождествляется с «дифференцированием по координате»,
а энергия — с «дифференцированием по времени».
... Всё это прекрасно, но как быть с вектором состояния? Что мешает признать, что он
представляет реальность? Почему физики зачастую крайне неохотно принимают такую
философскую позицию? Не просто физики, а те, у кого все в порядке с целостным мировоззрением и не склонны вестись на недоопределнные рассуждения.
.... При желании можно представить себе, что волновая функция фотона выходит из источника
в виде четко очерченного волнового пакета малых размеров, затем, после встречи с
расщепителем луча, она делится на две части, одна из которых отражается от расщепителя,
а другая проходит сквозь него, например, в перпендикулярном направлении. В обоих мы заставляли волновую функцию разделиться на две части в первом расщепителе луча...
Аксиома 1: квант не делится. Человек, говорящий про половинки кванта вне его длины волны воспринимается мной с не меньшим скептицизмом, чем человек, создающий новую вселенную при каждом изменении состояния кванта. Аксиома 2: фотон не меняет траекторию, а если она изменилась, то это - переизлучение фотона электроном. Потому как квант - не упругая частица и нет ничего, от чего бы он отскочил. Почему-то во всех описаниях подобных опытов эти две вещи избегается упоминать, хотя они имеют более базовое значение, чем те эффекты, которые описываются. Не понимаю, почему так говорит Пенроуз, он же не может не знать про неделимость кванта, мало того, он упоминал это в двухщелевом описании. В подобных чудесных случаях нужно все же стараться оставаться в рамках базовых аксиом и если они вступают в какое-то противоречие с опытом, это повод более тщательно подумать о методике и интерпретации.
Давайте пока примем, хотя бы в качестве математической модели квантового мира, это
курьезное описание, согласно которому квантовое состояние эволюционирует какое-то время
в виде волновой функции, обычно «размазанной» по всему пространству (но с
возможностью фокусировки в более ограниченной области), а затем, когда проводится измерение, это состояние превращается в нечто локализованное и вполне определенное.
Т.е. всерьез говорится о возможности размазанности чего-то на несколько световых лет с возможностью мнгновенного взаимного изменения. Такое можно представить чисто абстрактно - как сохранение формализованного описания на каждой из сторон, но никак не в виде какой-то реальной сущности, представленной природой кванта. Здесь - явная преемственность идеи о реальности существования математических формализмов.
Вот почему я воспринимаю как Пенроуза, так и других подобных промистически мыслящих физиков очень скептически, несмотря на их очень громкий авторитет...
В книге С. Вайнберг Мечты об окончательной теории:
Философия квантовой механики настолько не имеет отношения к ее реальному использованию, что начинаешь подозревать, что все глубокие вопросы о смысле измерения на самом деле пусты, порождены несовершенством нашего языка, который создавался в мире, практически управляющемся законами классической физики.
В статье Что такое локальность и почему ее нет в квантовом мире?, где проблему обобщает на основе последних событий Александр Львовский, сотрудник РКЦ и профессор Университета Калгари:
Квантовая нелокальность существует только в рамках копенгагенской интерпретации квантовой механики. В соответствии с ней, при измерении квантового состояния происходит его коллапс. Если же брать за основу многомировую интерпретацию, которая говорит, что измерение состояния лишь распространяет суперпозицию на наблюдателя, то никакой нелокальности нет. Это лишь иллюзия наблюдателя, «не знающего», что он перешёл в запутанное состояние с частицей на противоположном конце квантовой линии.
Некоторые выводы из статьи и ее уже имеющегося обсуждения.
В настоящее время существует очень много интерпретаций разного уровня проработанности, пытающихся не просто описать явление запутанности и другие "нелокальные эффекты", но описать предположения о природе (механизмах) этих явлений, - т.е. гипотезы. Причем преобладает мнение, что невозможно в этой предметной области что-то вообразить, а возможно только полагаться на те или иные формализации.
Однако, эти самые формализации примерно с одинаковой убедительностью могут показать все, что угодно интерпретатору, вплоть до описания возникновения новой вселенной всякий раз, в момент квантовой неопределенности. А так как такие моменты возникают при наблюдении, то привнести сознание - как непосредственный участник квантовых явлений.
Подробное обоснование - почему такой подход представляется совершенно неверным - смотрите в статье Эвристика.
У разнесенных электронов и не может быть чего-то, обеспечивающих их сверхсветовую зависимость и в этом Эйнштейн был прав, с этим спорят только мистики и фантазеры, а не настоящие физики. У разнесенных электронов есть только то, что они, будучи "запутанными" а потом разнесенными, просто сохраняют свойства, определяемые квантово-механическими характеристиками. И эти свойства не описываются причинностями макромира, в котором мы только и можем проводить измерения.
Квантово-механические "причинности" - это нечто более фундаментальное, это - совсем другая тема, без использования привычных нам понятий пространства и времени. Потому как электрон сам по себе - явление релятивистское - стоячая волна, распространяющаяся со скоростью света и в ее системе отсчета нет пространства и времени.
Ну а фраза "частицы, находящиеся далеко друг от друга, таинственным образом мгновенно влияющие друг на друга" - бред полных невежд.
Так что всякий раз, когда очередной крутой математик начнет доказывать нечто вроде единства природы двух совершенно разных явлений на основе сходства их математического описания (ну, к примеру, всерьез проделывается такое с законом Кулона и законом тяготения Ньютона) или "объяснять" квантовую запутанность особым "измерением" без представления его реального воплощения (или существованием меридианов в формализме землян), я буду держать эту статью наготове :)
Обнаружен организм с крупнейшим геномом Новокаледонский вид вилочного папоротника Tmesipteris oblanceolata, произрастающий в Новой Каледонии, имеет геном размером 160,45 гигапары, что более чем в 50 раз превышает размер генома человека. | Тематическая статья: Тема осмысления |
Рецензия: Рецензия на книгу Дубынина В.А. Мозг и его потребности. От питания до признания | Топик ТК: Интервью с Константином Анохиным |
| ||||||||||||