Ознакомьтесь с Условиями пребывания на сайте Форнит Игнорирование означет безусловное согласие. СОГЛАСЕН
 
 
Если в статье оказались ошибки...
 

Эволюция нервной системы

Относится к   «О системной нейрофизиологии»

Эволюция нервной системы

Со времени публикации была проделана работа по развитию прототипа системы индивидуальной адаптивности Beast (fornit.ru/beast) и появилось много новых данных и материалов с которыми можно ознакомисться в трилогии «Основы фундаментальной теории сознания» и точки входа теории МВАП «Организации механизмов мозга человека».
Это - сборник статей, основанных на фактическом материале, иллюстрирующий становление и развитие нервной системы, начиная с одноклеточных до высших животных. Из статей, которые доступны по приводимым ссылкам, здесь цитируются фрагменты, позволяющие увидеть преемственность механизмов адаптивного реагирования, постепенного их усложнения, приводящего к новому качеству и новым возможностям для организмов. При этом видно, что всегда соблюдается прямая зависимость: сложность реакций от сложности организации механизмов.
Целью сборника является определение смысловых границ применения таких понятий как "обучение", "поведение", "интеллект" в контексте системного подхода к организации механизмов адекватного реагирования. Это необходимо для того, чтобы не возникали казусы, подобные утверждениям о "поведении" атомов, или о "поведении" амебы. Надо сказать, что слово "поведение" используется повсеместно в молчаливом расчете на раскрытие смысла в контексте темы, но слишком часто это приводит к неверным утверждениям.
Предлагается критерий, вполне определяющий смысловые границы использования подобных понятий, а именно: наличие системы "личного отношения", которая характеризуется функциональным назначением: она способна определять тип закрепляемых реакций: в случае положительного результата реакции - активировать такое поведение в будущем, а в случае отрицательного - тормозить, блокировать, с помощью возбуждающих или тормозящих типов связей между нейронами. Такая зависимость позволяет оптимизировать реакцию, делая ее все более адекватной условиям.
В отличие от врожденной системы откликов от рецепторов "отрицательного" или "положительного" воздействия (в том числе и результатов собственного поведения), система личного отношения реализует механизм закрепления памяти для выбора одного из двух типов реагирования: стимулирующий поведение или тормозящий его, для использования в качестве "жизненного опыта", для прогностического выбора варианта поведения из уже известных. Она сама способна изменять свое отношение, усложняясь и уточняясь в ходе жизненного опыта.
Эмпирически ее действие проявляется при формировании "условных рефлексов": это то, что заставляет в одних случаях закреплять реакцию, а в других - блокировать ее. Поощрение или наказание образуют тот общий фон, который и определяет направленность закрепляемого, это - то, что формирует самый общий "эмоциональный контекст" в котором выявляется смысл, значимость происходящего. Общее в таких реакциях у простейших и сложных организмов в том, что оценка основывается на сигналах рецепторов, имеющих отрицательное или положительное значение для организма, что и составляет базовую основу системы значимости.
Выделение такой системы среди других механизмов достаточно условно: она не присутствует в виде "центра", а рассредоточена в общей организации памяти мозга, хотя имеет преимущественную локализацию в тех своих составляющих частях, что и любые другие входные рецепторные анализаторы, составляющие колонки производных детекторов признаков.
Система личного отношения предполагает положительную или отрицательную оценку, выражающуюся в виде двух базовых общих состояний психической активности, "эмоций": хорошо или плохо и всю иерархию остальных эмоциональных контекстов поведения, что подробнее описано в О системной нейрофизиологии .
Цитируемые фрагменты выделены коричневым.

Этапы развития нервной системы Из книги «Начала Физиологии» под ред. академика А.Д. Ноздрачева.

Среди беспозвоночных наиболее примитивный тип нервной системы в виде диффузной нервной сети встречается у кишечнополостных (см. рис. 1.2). Их нервная сеть представляет собой скопление мультиполярных и биполярных нейронов, отростки которых могут перекрещиваться, прилегать друг к другу и лишены функциональной дифференциации на аксоны и дендриты. Диффузная нервная сеть не разделена на центральный и периферический отделы и может быть локализована в эктодерме и энтодерме.
Эпидермальные нервные сплетения, напоминающие нервные сети кишечнополостных, могут быть обнаружены и у более высоко организованных беспозвоночных (плоские и кольчатые черви), однако здесь они занимают подчиненное положение по отношению к ЦНС, которая выделяется как самостоятельный отдел.
...Ганглионизация нервных элементов получает дальнейшее развитие у высших беспозвоночных, кольчатых червей, моллюсков и членистоногих. У большинства кольчатых червей брюшные стволы ганглионизированы таким образом, что в каждом сегменте тела формируется по одной паре ганглиев, соединенных коннективами с другой парой, расположенной в соседнем сегменте.
...Эволюция нервной системы беспозвоночных идет не только по пути концентрации нервных элементов, но и в направлении усложнения структурных взаимоотношений в пределах ганглиев. Не случайно брюшную нервную цепочку сравнивают со спинным мозгом позвоночных животных. Как и в спинном мозгу, в ганглиях обнаруживается поверхностное расположение проводящих путей, дифференциация нейропиля на моторную, чувствительную и ассоциативные области.
...Прогрессивное развитие мозга у головоногих моллюсков и насекомых создает предпосылку для возникновения своеобразной иерархии командных систем управления поведением. Низший уровень интеграции в сегментарных ганглиях насекомых и в подглоточной массе мозга моллюсков служит основой для автономной деятельности и координации элементарных двигательных актов. В то же время мозг представляет собой следующий, более высокий уровень интеграции, где могут осуществляться межанализаторный синтез и оценка биологической значимости информации. На основе этих процессов формируются нисходящие команды, обеспечивающие вариантность запуска нейронов сегментарных центров. Очевидно, взаимодействие двух уровней интеграции лежит в основе пластичности поведения высших беспозвоночных, включающего врожденные и приобретенные реакции.
...Нервная система позвоночных закладывается в виде сплошной нервной трубки, которая в процессе онто— и филогенеза дифференцируется на различные отделы и является также источником периферических симпатических, парасимпатических и метасимпатических нервных узлов. У наиболее древних хордовых (бесчерепных) головной мозг отсутствует, и нервная трубка представлена в малодифференцированном состоянии.
...В ходе дальнейшей эволюции наблюдается перемещение некоторых функций и систем интеграции из спинного мозга в головной — процесс энцефализации, который был рассмотрен выше на примере беспозвоночных животных. В период филогенетического развития от уровня бесчерепных до уровня круглоротых формируется головной мозг как надстройка над системами дистантной рецепции.
...Передний мозг круглоротых длительное время считали чисто обонятельным. Однако исследования недавнего времени показали, что обонятельные входы в передний мозг не являются единственными, а дополняются сенсорными входами других модальностей. Очевидно, уже на ранних этапах филогенеза позвоночных передний мозг начинает участвовать в переработке информации и управлении поведением. Вместе с тем энцефализация как магистральное направление развития мозга не исключает эволюционных преобразований в спинном мозгу круглоротых. В отличие от бесчерепных нейроны кожной чувствительности выделяются из спинного мозга и концентрируются в спинномозговой ганглий. Наблюдается совершенствование проводниковой части спинного мозга. Проводящие волокна боковых столбов имеют контакты с мощной дендритной сетью мотонейронов. Формируются нисходящие связи головного мозга со спинным через мюллеровские волокна — гигантские аксоны клеток, лежащих в среднем и продолговатом мозгу.
...Наиболее существенные в эволюционном плане изменения происходят в промежуточном мозгу амфибий. Здесь обособляется таламус (зрительный бугор), дифференцируются структурированные ядра (наружное коленчатое тело) и восходящие пути, связывающие зрительный бугор с корой (таламокортикальный путь).
В полушариях переднего мозга происходит дальнейшая дифференциация зачатков старой и древней коры. В старой коре (археокортексе) обнаруживаются звездчатые и пирамидные клетки. В промежутке между старой и древней корой появляется полоска плаща, которая является предтечей новой коры (неокортекса).
В целом развитие переднего мозга создает предпосылки для перехода от свойственной рыбам мезэнцефалоцеребреллярной системы интеграции к диэнцефалотелэнцефалъной, где ведущим отделом становится передний мозг, а таламус промежуточного мозга превращается в коллектор всех афферентных сигналов. В полной мере эта система интеграции представлена в зауропсидном типе мозга у рептилий и знаменует собой следующий этап морфофункциональной эволюции мозга.
Развитие таламокортикальной системы связей у рептилий приводит к формированию новых проводящих путей, как бы подтягивающихся к филогенетически молодым формациям мозга.
В боковых столбах спинного мозга рептилий обособляется восходящий спинно—таламический путь, который проводит к головному мозгу информацию о температурной и болевой чувствительности. Здесь же в боковых столбах формируется новый нисходящий путь — красно—ядерно—спинномозговой (Монакова). Он связывает мотонейроны спинного мозга с красным ядром среднего мозга, которое включено в древнюю экстрапирамидную систему двигательной регуляции. Эта многозвенная система объединяет влияние переднего мозга, мозжечка, ретикулярной формации ствола, ядер вестибулярного комплекса и координирует двигательную активность. У рептилий, как истинно наземных животных, возрастает роль зрительной и акустической информации, возникает необходимость сопоставления этой информации с обонятельной и вкусовой. В соответствии с этими биологическими изменениями в стволовой части мозга рептилий происходит целый ряд структурных изменений. В продолговатом мозгу дифференцируются слуховые ядра, помимо улиткового ядра появляется угловое, связанное со средним мозгом. В среднем мозгу двухолмие преобразуется в четверохолмие, в ростральных холмах которого находятся акустические центры.
Наблюдается дальнейшая дифференциация связей крыши среднего мозга с таламусом, который является как бы преддверия входа в кору всех восходящих сенсорных путей. В самом таламусе происходит дальнейшее обособление ядерных структур и установление между ними специализированных связей.
...У млекопитающих развитие переднего мозга сопровождалось бурным ростом новой коры, находящейся в тесной функциональной связи с таламусом промежуточного мозга. В коре закладываются эфферентные пирамидные клетки, посылающие свои длинные аксоны к мотонейронам спинного мозга.
Таким образом, наряду с многозвенной экстрапирамидной системой появляются прямые пирамидные пути, которые обеспечивают непосредственный контроль над двигательными актами. Корковая регуляция движений у млекопитающих приводит к развитию филогенетически наиболее молодой части мозжечка — передней части задних долей полушарий, или неоцеребеллума. Неоцеребеллум приобретает двусторонние связи с новой корой.
Рост новой коры у млекопитающих происходит настолько интенсивно, что старая и древняя кора оттесняются в медиальном направлении к мозговой перегородке. Бурный рост коры компенсируется формированием складчатости. У наиболее низко организованных однопроходных (утконос) на поверхности полушария закладываются первые две постоянные борозды, остальная же поверхность остается гладкой (лиссэнцефалический тип коры).
Как показали нейрофизиологические исследования, мозг однопроходных и сумчатых млекопитающих лишен еще соединяющего полушария мозолистого тела и характеризуется перекрытием сенсорных проекций в новой коре. Четкая локализация моторных, зрительных и слуховых проекций здесь отсутствует.
У плацентарных, млекопитающих (насекомоядных и грызунов) отмечается развитие более четкой локализации проекционных зон в коре. Наряду с проекционными зонами в новой коре формируются ассоциативные зоны, однако границы первых и вторых могут перекрываться. Мозг насекомоядных и грызунов характеризуется наличием мозолистого тела и дальнейшим увеличением общей площади новой коры, развитием борозд и извилин (гирэнцефалический тип коры).
В процессе параллельно—адаптивной эволюции у хищных млекопитающих появляются теменные и лобные ассоциативные поля, ответственные за оценку биологически значимой информации, мотивацию поведения и программирование сложных поведенческих актов. Наблюдается дальнейшее развитие складчатости новой коры.
И наконец, приматы демонстрируют наиболее высокий уровень организации коры головного мозга. Кора приматов характеризуется шестислойностью, отсутствием перекрытия ассоциативных и проекционных зон. У приматов формируются связи между фронтальными и теменными ассоциативными полями и, таким образом, возникает целостная интегративная система больших полушарий.

Эволюционное введение в общую психологию А.Р. Лурия

Реакция на индифферентные, но сигнальные раздражения могут быть сформулированы в прижизненном опыте даже простейших животных и, следовательно, эта форма жизнедеятельности, связанная с простейшей ориентировкой в окружающей среде, обнаруживает известную пластичность.
Возникает, однако, вопрос: какие механизмы характеризуют эти простые формы поведения животных? Эти пластичные формы поведения на ранних этапах филогенеза отличаются от сложнейшей условно - рефлекторной деятельности, которая до сих пор описывалась лишь при наблюдениях высокоразвитых животных, обладающих корой головного мозга?
Для того, чтобы ответить на этот вопрос, остановимся сначала на некоторых типовых формах поведения простейших, иначе говоря, на стадии донервной жизни, и лишь затем перейдем к анализу тех форм поведения, которые формируются при возникновении нервной системы.
В качестве исходного фактора мы остановимся на наблюдениях над поведением амебы, в свое время проведенных американским исследователем Дженнигсом.
Известно, что прикосновение к телу амебы вызывает изменение в ее состоянии. На месте прикосновения возникают ложноножки (псевдоподии), амеба обхватывает этими ложноножками объект, который вызвал раздражение (например, кусочек пищи или пылинки); если этот объект - кусочек пищи, который может быть усвоен амебой, лженожки замыкаются, пища заключается в протоплазму амебы и переваривается ею; если этот объект нейтральный, он выбрасывается амебой.
Близкое к этому, но более сложное поведение можно наблюдать и при реакции амебы на дистантные раздражители. В одних случаях амеба начинает приближаться к расположенному на расстоянии объекту и пытается захватить его; в других случаях она делает обратные движения, пытается уйти от раздражающего объекта. Иногда такое поведение амебы обнаруживает настолько значительную сложность, что у исследователей создается впечатление о том, что амебы "охотятся" или о том, что она "убегает от опасности".
...
Каковы же те механизмы, которые вызывают такие двигательные реакции амебы?
Известно, что тело амебы состоит из неоднородных по своей физико - химической характеристике слоев протоплазмы. Протоплазма наружного, более плотного слоя находится в состоянии геля; протоплазма внутренних, более жидких слоев тела - в состоянии золя. Наружный слой протоплазмы обладает вместе с тем большей возбудимостью по отношению к внешним раздражителям. Приложение внешнего стимула вызывает повышение обмена в том месте протоплазмы, на который он непосредственно воздействует, а протоплазма в этом месте переходит в состояние золя. Это приводит к образованию ложноножек, а затем и к движению амебы, причем направление этого движения, как было уже сказано, зависит от интенсивности или характера действующего на амебу раздражителя.
...
Следует указать также, что в реакции амебы на внешнее раздражение проявляется известная изменчивость: амеба привыкает к сигналам, и повторение однородных сигналов может при известных условиях перестать вызывать соответствующие реакции.
Наоборот, как показали опыты, изменение сигнала вновь вызывают оживление угасшей реакции. Можно подумать, что уже на этом этапе у животного появляются зачаточные формы того вида поведения, которое дальше на сложных ступенях развития принимают формы ориентировочного рефлекса с характерными для него явления привыкания к повторяющим стимулам и к повышению реакции на новизну сигналов.
...
Есть ли для этого какие - либо основание и не проявляется ли "научение" у простейших иные черты, существенно отличающие этот процесс от условно - рефлекторной деятельности?
Прежде всего изменения поведения, полученные в процессе такого научения, оказываются очень не прочные и быстро угасают, как только внешние условия перестают поддерживать вызванные к жизни формы поведения. С другой стороны, эти формы поведения, раз угаснув, не восстанавливаются самостоятельно, и животное, потерявшее эти формы поведения, должно "обучаться" снова.
Наконец, раздражители, действующие на простейших, приобретают лишь кратковременное сигнальное значение; у животного не вырабатываются те стойкие формы сигнального поведения, которые характерны для условно - рефлекторной деятельности высших животных.
...
Как возникает нервная система и какие изменения в поведении появляются с ее возникновением?
Предпосылкой для возникновения нервной системы имеют место уже у одноклеточных.
Как мы говорили выше, в месте приложения возбуждения возникает очаг повышенного обмена веществ и максимальное возбуждение, постоянно распространяющееся от этого очага на остальные участки тела одноклеточного.
...
Переход от одноклеточных форм жизни к многоклеточному существованию усложняет жизнедеятельность животного и приводит к возникновению необходимости усовершенствования проведения возбуждения.
С одной стороны, для того, чтобы животное могло приспособиться к условиям окружающей среды, распространение возбуждения по его телу должно значительно ускориться. С другой стороны, возбуждение возможно в более короткие сроки должно распространяться на возможно большие участки тела, охватывая такую площадь, которую не могло сразу же охватить непосредственное распространение возбуждения по протоплазме.
Именно в силу этих биологических причин угасательные градиенты возбуждения начинают превращаться у многоклеточных в уже отмеченные выше морфологические фиксированные дорожки особенно возбудимой протоплазмы; тем самым появляется проводящий аппарат нервной системы. Этот аппарат оказывается в состоянии проводить возбуждение со значительно большой скоростью и в кратчайшие сроки доводить его до отдельных участков тела многоклеточного.
...
Исследования показали, что если скорость распространения Возбуждения по протоплазме не превышает 1 - 2 микрона в секунду, скорость распространения возбуждения по простейшей нервной системе несравнена большая; она достигает 0, 5 метров в секунду; скорость проведения возбуждения в нервной системе лягушки достигает 25 метров в секунду, а у человека - 125 метров в секунду.
...
С появлением специальных высокочастотных рецепторных клеток и сетевидной нервной системы возникает повышение чувствительности не только к контактным (непосредственно приложенным к поверхности тела), но и к дистанционным (действующим на расстоянии) раздражителям. Возбуждение, вызванное этими раздражителями, распространяется несравненно быстрее, чем это было на стадии донервной жизни, и охватывает гораздо большую поверхность.

... поведение животного, стоящего на данной фазе развития, может проявлять известную пластичность, но здесь мы еще не можем видеть тех форм дифференцированного замыкания новых связей или прочных навыков, которые проявляются лишь на следующем этапе эволюции.
...
Возникновение переднего ганглия и есть важнейший факт, указывающий на появление нового типа регуляций, связанных с центральной нервной системой.
Уже ближайшее рассмотрение строения переднего конца тела плоских, а затем и круглых червей позволяет увидеть эту первоначальную организацию центральной нервной системы в достаточно отчетливых формах.
... передний ганглий позволяет объединить информацию, полученную с периферии, переработать и хранить дифференцированные программы реакции и передавать их на соответствующие сегментарные мотонейроны, обеспечивая тем самым контроль над дальнейшим поведением.
... Как легко можно увидеть из наблюдений, червь, обладающий такой ганглионарной нервной системой, обнаруживает значительно более дифференцированные формы поведения, чем те которые можно было наблюдать у морской звезды, гидры или медузы.
...
Как показали исследования, в первых опытах червь с равной вероятностью направлялся в правое и левое плечо лабиринта. Однако после ряда повторений, число ошибок резко уменьшилось, и червь направлялся в то плечо лабиринта, где он не получал соответствующего шока.
Характерно, что такой червь может не только обучаться, но переучиваться.
... Несмотря на значительные приобретения, характерные для этого этапа развития, многие признаки поведения животного, у которых впервые появилась нервная система, сохранили еще много примитивных особенностей. Сформированный "навык" продолжал еще иметь очень косвенный характер, и животному нужно было значительное число проб, чтобы сменить один выработанный навык на другой.
... у животных, обладающих центральной нервной системой (построенной по типу цепочки нервных ганглиев) можно наблюдать и гораздо более сложные формы поведения... Иногда эти наследственные программы видового поведения являются на столько сложными, что создают впечатление разумных видов приспособления животных к окружающей среде; поэтому у некоторых исследователей возникла тенденция толковать их как разумные интеллектуальные формы поведения животных и приписывать таким животным разум, близкий к человеческому.
...
Для того, чтобы сохранить пищу на зиму и закрыть вход в свою нору, дождевой червь очень часто втаскивает в свою нору листья, которые остаются там и которыми червь может питаться в течении довольно длительного периода. Исследователи обратили внимание на удивительный факт: втаскивая в нору лист, червь всегда берет его за передний конец; казалось бы во всех возможных способах он выбирает наиболее целесообразный способ введения листа в узкое отверстие норы. Казалось бы, червь различает форму листа и использует его острый конец, позволяющий ему провести нужную операцию самым экономным путем. Интересно, что еще Дарвин, этот тончайший наблюдатель, анализируя такое поведение, пришел к мысли, что и у червя наблюдается разумная форма поведения, в основе которой, видимо, стоит соответствующий "расчет", делающий это поведение самым целесообразным. Можем ли мы согласится с этим? Естественно, что такое предположение вряд ли может показаться убедительным: при такой простой нервной системе, о которой шла речь, вряд ли можно думать о каких либо аналогах сложного процесса восприятия и тем более - сложного разумного поведения. Однако, как расшифровать те механизмы, которые лежат в основе таких форм целесообразного действия.
Для того, чтобы ответить на этот вопрос, ученые провели ряд остроумных исследований, которые показали, что целесообразное поведение червя, втаскивающего лист в нору за узкий конец, на самом деле гораздо проще, чем это кажется, и что оно детерминировано гораздо более элементарными и вполне понятными для нас факторами.
...
В чем же заключается основной принцип организаций этих сложных форм поведения, достигающих предельного развития у насекомых? Этот принцип заключается в следующем: в процессе эволюции какими - то ближе еще неизвестными путями (может быть, путем мутации, может быть, иными путями) создаются как более соответствующие условиям существования этих животных - форма строения их тела и форма их поведения.
Крыло мухи или бабочки является идеальным прибором для полета. Хоботок пчелы является идеальным прибором для того, чтобы добывать нектар цветов; как известно длина хоботка такова, что он приспособлен как раз для добывания нектара из всех растений, которыми питаются пчелы. Строение тела у любого насекомого поражает своей целесообразностью и приспособленностью к условиям его существования. Такое целесообразное строение тела результат законов эволюции и отбора. Такие же целесообразные и приспособленные к условиям среды характером отличается не только строение тела беспозвоночных, но и программа их поведения.
Следовательно, у разбираемых нами животных наследственно закрепленными являются не только такие признаки, как строение крыла, строение хоботка, строение ноги и т. д., но и целый ряд форм поведения.
...Наиболее интересным является, однако, тот факт, что во всех этих случаях это поведение одинаково у всех особей данного вида; каждая особь не должна вырабатывать свою программу поведения в индивидуальном опыте, и одновременно это поведение оказывается целесообразным, соответствуя тем условиям, среди которых живет данное животное.
...
Известно, что на переднем головном конце тела пчелы расположены рецепторы, значительно более дифференцированные и сложные, чем те рецепторы, которыми располагает червь. У пчелы есть, по сути говоря, все те органы чувств, которые есть у человека, а кроме того, есть и некоторые органы чувств, которых нет у человека.
...
чем вызываются и как протекают эти инстинктивные формы поведения. Возникают ли эти сложные программы в результате детального анализа ситуации или же в результате относительно простых стимулов, которые пускают в ход программы, заложенные в нервных ганглиях, и ведут к дальнейшему развертыванию врожденных форм поведения?
...
Паук, который сидит в паутине набрасывается на муху, запутавшуюся в паутине, и пожирает ее. Это тоже врожденная программа поведения. Чем она определяется? Оказывается, что сигналом, вызывающим реализацию этой программы действия, является вибрация. Когда муха запутывается в паутине, паутина начинает вибрировать и паук бросается на муху. Характерно, что достаточно приложить к паутине вибрирующий камертон, чтобы вызвать такое же поведение: паук вылезает из своего гнезда и бросается на камертон, производя все движения, которые он производил в отношении мухи.
... сложнейшие инстинктивные программы поведения могут вызываться относительно простыми сигнальными признаками, и что эти врожденные программы вызываются принципиально тем же путем, как и более простые безусловные рефлексы.
...
Животные с ганглионарной нервной системой (в первую очередь, насекомые) функционально могут воспринимать целый комплекс раздражений, но практически реагирует только на отдельные сигнальные свойства, которые возбуждают в них врожденные программы поведения. На этом этапе развития врожденные формы приспособления продолжают быть ведущими.
Было бы неправильно, думать что у этих животных нет индивидуальных форм поведения, и таких животных нельзя ничему научить.
Индивидуально - изменчивые формы поведения есть и у насекомых, и они могут быть обучены и переучены, однако, это очень медленный процесс, не обладающий нужной устойчивостью.
В чем же состоит лимит этого обучения и приобретения индивидуально - изменчивой формы поведения у этих животных, которые обладают ганглионарной нервной системой?
Прежде всего, это переучивание может протекать только в пределах инстинктивных программ поведения. Иллюстрацией могут служить приведенные в прошлый раз опыты немецкого исследователя Фриша, при которых было обнаружено, что пчела легко приучивается реагировать на сложные фигуры, похожие на цветки, но лишь с большим трудом различает простые геометрические фигуры, не имеющие естественных аналогов.

Основные механизмы "научения" у простейших животных - сенсибилизация и привыкание. Это не значит, что у насекомых вообще нет механизмов образования долговременных связей на месте ранее неэффективных синоптических контактов. Эти механизмы уже есть и они реализуются. Но они формируются пока еще о единственном, обезличенном контексте оценки результатов поведения - с помощью непосредственно отклика рецепторов, которые пока еще не несут более сложного разделения значимости, чем хорошо и плохо, и то не в качестве эмоции, а являются личностно-безразличным результатом эволюционной выбраковки неудачного. Но это уже является базой для формирования именно личностной, эмоциональной оценки, начиная с некоторого уровня сложности организации нервной системы. Невозможно, конечно, провести резкую черту между абсолютно "безличным" и "личным" поведением и этого делать не нужно, понимая, что любые понятия - достаточно условны и ограничены. Важно проследить сам принцип усложнения механизмов. Но достаточно определенно можно было бы проследить тот уровень организации нервной системы, когда уже есть механизм, гибко определяющий закрепление связей для одного из двух типов реагирования: стимулирующего реакцию или блокирующую ее. И самый характерный ее признак - "эмоциональный" контекст поведения, в простейшем случае - состояния "хорошо" или "плохо" (можно допустить, что нормой является состояние благополучия "хорошо", а потребности и неудачи образуют контекст "хуже, чем было", что требует активизации реакций, приводящих к "хорошо" и/или блокировки реакций, приводящих к "плохо").

В Нейробиология и генетика поведения описывается механизм образования "условных рефлексов" в условиях дорассудочного восприятия, без участия системы значимости, роль которой выполняют непосредственно сигналы рецепторов, а роль эмоциональных контекстов восприятия, в которых формируется рассудочный опыт - системы медиаторов при бессознательном обучении:
Каким же образом формируются навыки, то есть, новые синаптические связи? В серии экспериментов на мухах и улитках морских зайцах (аплизиях - их очень любят нейробиологи), были расшифрованы механизмы формирования кратковременной и долговременной памяти. За эти работы Эрик Кенделл получил Нобелевскую премию.

Допустим, улитке подали электрический ток на хвост. Ей нужно хвост отдернуть. Каким образом это происходит.
От обиженного хвоста поступил сигнал в виде серотонина. Серотонин связывается с рецептором на мембране сенсорного нейрона. Именно здесь происходит этап обработки информации и принятии решения. Рецептор взаимодействует с аденилатциклазой, которая синтезирует циклический аденозинмонофосфат (цАМФ). Последний взаимодействует с киназой (киназы – это белки, которые фосфорилируют другие белки). Киназа фосфорилирует кальциевые каналы в мембране, через них идет ток, мембрана деполяризуется, что является сигналом к выбросу нейромедиаторов в синаптическую щель. Нейромедиатор связывается с рецептором на постсинаптической мембране мотонейрона, и мотонейрон дает мышцам команду отдернуть хвост от неприятного раздражителя. Это – кратковременная память (работает 3-4 минуты).
Если раздражение продолжает поступать регулярно, то эта реакция – долгосрочная память (работает 12-24 часа). В этом случае продолжает синтезироваться цАМФ, то фрагмент киназы перемещается в ядро и активирует здесь ген, модифицирующий киназу – отщепляющий от нее кусочек таким образом, что она становится перманентно активной. То есть, циклический аденозинмонофосфат ей для активации становится не нужен. Это – долговременная память.
Если сигнал продолжает поступать и дальше, то включается следующий механизм. Большие количества фрагментов киназы активируют фактор транскрипции, запускающий работу группы генов, обеспечивающей синтез белков и образование нового синапса. Это – память на всю жизнь, именно она должна работать при обучении.

Импринтинг утят, когда они фиксируют образ первого движущегося предмета на всю жизнь, принимая за утку - тоже должен иметь схожий механизм, но роль рецептора играет предопределенная связь, обеспечивающая необходимость такой фиксации. Эффект "25-го кадра", все эффекты неосознаваемого восприятия - так же используют этот древний механизм фиксации вне осознавания.

Сравнительная психология

Необходимо обратить внимание на взаимозависимость и параллелизм развития психики и двигательной активности. Как указывает К.Э. Фабри, именно движение (первично локомоция, а впоследствии и манипулирование) являлось решающим фактором эволюции психики. С другой стороны, без прогрессивного развития психики не могла бы совершенствоваться двигательная активность животных, не могли бы осуществляться биологически адекватные двигательные реакции и, следовательно, не могло бы быть эволюционного развития.
...
По мнению Фабри, расхождения между психологической и зоологической классификациями обусловлены тем, что морфологические признаки, на которых построена систематика животных, отнюдь не всегда определяют особенности и степень развития психической деятельности последних. Поведение животных представляет собой совокупность функций эффекторных органов животных. А в процессе эволюции именно функция первично определяет форму, строение организма, его систем и органов. Их строение и двигательные возможности лишь вторично определяют характер поведения животного и ограничивают сферу его внешней активности.
... врожденное и приобретаемое поведение не являются последовательными ступенями на эволюционной лестнице, а развиваются и усложняются совместно, как два компонента одного единого процесса. Прогрессивному развитию инстинктивного, генетически фиксированного поведения соответствует прогресс в области индивидуально-изменчивого поведения. Инстинктивное поведение достигает наибольшей сложности как раз у высших животных, и этот прогресс влечет за собой развитие и усложнение у них форм обучения.
...
На низшей ступени развития жизни у простейших одноклеточных животных наблюдается разнообразное поведение. Под микроскопом в капле воды можно видеть, как движутся, питаются, размножаются и погибают амёбы и инфузории. Сложность движений этих организмов поразительна. О трудностях изучения жизнедеятельности простейших животных проф. В. А. Вагнер остроумно и справедливо пишет: "В термине "простейшие" больше иронии, чем правды. Изучение их жизни не проще, чем изучение сложных организмов".
Движения простейших отличаются большим разнообразием, причем у представителей этого типа встречаются способы локомоции, присущие только им и совершенно отсутствующие у многоклеточных животных.
... осуществление наиболее примитивных инстинктивных движений - кинезов - определяется непосредственным воздействием градиентов интенсивности биологически значимых внешних факторов. Роль внутренних процессов, происходящих в цитоплазме, заключается в том, что они дают поведенческому акту "первый толчок", как и у многоклеточных животных.
... поведение простейших и в моторной и в сенсорной сфере у ряда видов уже достигает известной сложности.
У организмов, лишенных нервной системы, обнаружен целый ряд форм адаптивного поведения, напоминающих обучение.
Сенсибиллизация. Сенсибилизацией называется повышение чувствительности организма к воздействию какого-либо агента, способствующей модификации поведения.
Почти всегда инфузории демонстрировали высокую способность к обучению. Выработанные у них реакции по своему характеру и по способу их образования напоминали условные рефлексы высших животных. Некоторые исследователи их так и называли: "условные рефлексы простейших". Более тщательно проведенные исследования полностью опровергли представления о высоких способностях инфузорий. Грубая ошибка произошла из-за незнания особенностей врожденных форм поведения туфелек.
...Подобная реакция на изменения внешней среды представляет собой типичную сенсибилизацию первого типа, но никак не обучение.
...
Привыкание простейших. Примером подобного элементарного накопления индивидуального опыта служит привыкание. Напомним, что под привыканием понимается прекращение реакции на постоянно действующий раздражитель. По принятой системе классификации обучения его относят к типу неассоциативного обучения.
... У простейших привыкание весьма недолговечно и не поддается тренировке.
... Сам по себе факт наличия у животных, лишенных даже зачатков нервной системы, элементов поведения, напоминающих процесс обучения, представляет исключительный интерес для общих представлений об эволюции психики.
...
Вопрос о способности кишечнополостных формировать условные рефлексы в настоящее время остается открытым. Результаты немногочисленных экспериментальных попыток выработки условных реакций у различных видов этого типа не выявили свойств приобретенных реакций, которые можно было бы определить как условнорефлекторные.
В то же время неассоциативное обучение по типу привыкания у кишечнополостных осуществляется лучше и сохраняется дольше, чем у простейших.
...
В результате выяснилось, что при интервалах, сравнимых со временем сохранения следа после однократного привыкания, наблюдается ярко выраженное ускорение привыкания от опыта к опыту. Этот результат представляет интерес, поскольку именно по степени выраженности тренированности у животных различного уровня филогенеза (или нейронных систем различной сложности) при различных интервалах между приложениями можно судить о степени консолидации следа и, возможно, определить четкий критерий различия памяти кратковременной и долговременной - основных функциональных механизмов поведения.
Таким образом, прогресс в развитии функциональных механизмов поведения у кишечнополостных по сравнению с простейшими заключается в появлении нового свойства привыкания - тренированности.
...
Из анализа экспериментального материала следует, что условные рефлексы у изученных пресноводных планарий недостаточно стойки, не обладают всеми качествами классических условных рефлексов.
... Перечисленные свойства условных рефлексов не являются отражением индивидуальных особенностей отдельных видов, так как они характерны для животных с различной экологией. Таким образом, подобные реакции можно отнести к категории лишь примитивных нестойких условных рефлексов, свойственных животным определенного уровня филогенетического развития.
...
Следующий, высший уровень стадии элементарной сенсорной психики, которого достигают живые существа типа иглокожих, кольчатых червей и брюхоногих моллюсков, характеризуется появлением первых элементарных ощущений, а также органов манипулирования в виде щупальцев и челюстей.
...
Изменчивость поведения животных, находящихся на этом уровне развития психики дополняется появлением способности к приобретению и закреплению жизненного опыта. На этом уровне уже существует чувствительность. Двигательная активность совершенствуется и приобретает характер целенаправленного поиска биологически полезных и избегания биологически вредных воздействий.
Виды приспособительного поведения, приобретаемые в результате мутаций и передаваемые из поколения в поколение благодаря естественному отбору, оформляются в качестве инстинктов.
...
Нервная система существует у низших многоклеточных в весьма разнообразных формах: сетчатой (например, у гидры), кольцевой (медузы), радиальной (морские звезды) и билатеральной.
... двигательная активность кольчатых червей отличается большим многообразием и достаточной сложностью. Обеспечивается это сильно развитой мускулатурой, состоящей из двух слоев: внешнего (подкожного), состоящего из кольцевых волокон, и внутреннего, состоящего из мощных продольных мышц.
...
Р. Йеркс и ряд других ученых исследовали у дождевых червей способность к образованию простейших навыков. Для этой цели чаще всего использовалась методика выработки оборонительных условных реакций в Т-образном лабиринте.... В опытах Р. Йеркса черви обучались правильному выбору стороны после 80-100 сочетаний.
...
Анализ результатов показал, что у полихет вырабатываются реакции, обладающие всеми основными свойствами истинных условных рефлексов: возрастание числа положительных ответов от опыта к опыту, высокий максимальный процент положительных реакций (до 80-100) и длительность их сохранения (до 6-15 дней).
...
Весьма существенно, что выработанная реакция угасала при отсутствии подкрепления и самопроизвольно восстанавливалась. В контрольных опытах - при псевдообуславливании - увеличения числа положительных ответов не наблюдалось.
Выявленные закономерности условнорефлекторной деятельности полихет коррелируют с относительно дифференцированным мозгом животных. Хорошо известно, что одной из особенностей их мозга является возникновение специального ассоциативного центра - грибовидных тел. Удаление этих отделов мозга приводит к нарушению условных рефлексов, как показано в опытах на пчелах. Таким образом, истинные условные рефлексы как один из достаточных совершенных механизмов, определяющих приобретенное поведение, впервые в эволюции, по-видимому, появляются у полихет, которые вырабатывают привыкание по отношению к сотрясению, вибрации, движущейся тени, уменьшению и увеличению освещенности, электрическому току и другим раздражителям.... Если какой-то из этих раздражителей многократно повторять, то через некоторое время полихета перестает обращать на него внимание.
...
Поведение брюхоногих моллюсков, обитающих в разных средах, уже достаточно разнообразно. В частности, они проявляют довольно сложное половое поведение, выражающееся в своеобразных брачных танцах. Оплодотворенные яйца улитки откладывают в специально выкопанные ямки, отверстия которых после окончания кладки тщательно заделывают. Некоторве виды заключают яйца в специальный кокон из застывающей на воздухе пены.
Условные рефлексы у улиток вырабатываются примерно так же как у кольчатых червей, аналогичным образом они обучаются и в Т-образном лабиринте.... Перцепция, способность к предметному восприятию, у них еще отсутствует. Не исключено, правда, что у некоторых наземных улиток, как и у упомянутых выше свободно плавающих хищных моллюсков и полихет, уже намечаются зачатки этой способности. Так, виноградная улитка обходит преграду еще до прикосновения к ней, ползет вдоль нее, но только если преграда не слишком велика; если же изображение преграды занимает всю сетчатку, улитка наталкивается на нее. Не реагирует она и на слишком мелкие предметы.
...
Дальнейшее развитие и усложнение сегментарной нервной системы наблюдается у высших беспозвоночных животных - насекомых.
По сравнению с червями и моллюсками, у них усложняется внешнее и внутреннее строение тела, которое делится на голову, грудь, брюшко, появляются крылья, конечности и т.д.
Соответственно и в единстве с этим усложняется и совершенствуется нервная система. Узлы, имеющие отношение к одной какой-нибудь части тела, сливаются вместе и образуют нервные центры.
Наряду со специализацией нервных центров, развиваются механизмы, координирующие их взаимосвязь и взаимозависимость.
Особенно усложняется головной узел, воспринимающий зрительные, обонятельные, осязательные и другие раздражения и регулирующий движения конечностей, крыльев и других органов.
... исследователи выявили способность насекомых к усвоению навыков. Турнер, например, приучил тараканов различать зеленые и красные картоны посредством электрических ударов на одном и подкармливания на другом картоне. Применяя такой же метод, Шнейрля установил, что муравьи усваивают правильный путь в коридорах довольно сложного лабиринта. Шиманский так же доказал возможность образования навыков у тараканов при нахождении пути в лабиринте.
...
В остроумных экспериментах Вагнера выяснены качественные особенности "памяти" у насекомых. Шмели, улетающие довольно далеко от гнезда, обычно всегда в него возвращаются, но в случаях перемещения гнезда на 1/2 метра, они его не находят.
...
Поведение насекомых главным образом складывается из инстинктов. Эта унаследованная форма сложного поведения дала основания к распространению различных мнений о разумной, целесообразной и вместе с тем загадочной и непонятной организации жизни таких существ, как насекомые.
В действительности же ничего загадочного и разумного в инстинктивном поведении насекомых нет. Возникнув и закрепившись в процессе приспособления животных к условиям жизни, инстинкты проявляются приблизительно одинаково у особей одного вида.
Шмели и пчелы, вылупившись из коконов, без всякой выучки или подражания строят из воска ячейки и соты точно так же, как и все особи данного вида.
Кажущаяся разумной целесообразность инстинктивных действий опровергается множеством объективных наблюдений.
...
Насекомые, ведущие общественный образ жизни (муравьи, термиты, осы, пчелы и некоторые другие), отличаются удивительно сложным поведением, огромным видовым разнообразием и высокой численностью во всех регионах Земли. Они достигли наиболее высокого развития среди беспозвоночных.
...
У общественных насекомых чрезвычайно сложное поведение. Их поведение во многом напоминает поведение млекопитающих и даже иногда соперничает с ним, что заставляет приписать насекомым разум и интеллект. Экспериментальный анализ показывает, что насекомые очень сильно ограничены стимулом, т.е. они реагируют в стереотипной форме, в строгой зависимости от получаемого стимула. У высших форм насекомых имеется определенная пластичность поведения, и обучение у них достигает значительного уровня. Три особенности сделали возможным такое сложное поведение: наличие очень сложных органов чувств, которые позволяют осуществлять высокодифференцированную оценку окружающей среды; эволюция сочлененных придатков (суставных соединений) и их последующие преобразования в ноги и органы рта чрезвычайной сложности, делающие возможной исключительную манипулятивную способность; развитие мозга, достаточно сложного, обладающего необходимой интегративной способностью для организации огромного потока получаемой сенсорной информации и управления всеми движениями придатков.
... Общение насекомых друг с другом (коммуникация) представляет собой комплексный процесс, включающий химические, слуховые, вибрационные, зрительные и тактильные стимулы.
Для изучения поведения общественных насекомых ученые чаще всего выбирают муравьев как самых активных представителей этого класса насекомых. Муравьи имеют исключительно сложные сообщества.
...
Возможности муравьиного интеллекта давно занимали умы исследователей. Долгое время господствовало мнение о том, что у насекомых вырабатываются лишь элементарные условные рефлексы. Однако сама по себе способность муравьев к запоминанию и научению была экспериментально продемонстрирована с помощью различных методик.
...
Высокий уровень психической организации муравьев вполне позволяет задуматься об их способности усваивать логическую структуру задачи и применять полученный опыт в измененной ситуации.
...
Еще более сложно поведение пчел, так как помимо специализированных групп и сложной организации внутри ульев, они передают информацию о местоположении источников пищи, пользуясь танцем - феномен, названный известным немецким биологом Фришем "языком пчел".
...у головоногих наблюдается та же противоречивость в способности к научению, что и у насекомых. Так, например, у осьминога вообще хорошо развита способность к научению на зрительные и тактильные стимулы, но в ряде случаев он оказывается не в состоянии решить, казалось бы, несложные задачи. Особенно это относится к преодолению преград: осьминог не способен находить обходной путь, если приманка (краб) располагается за прозрачной преградой (в стеклянном цилиндре или за проволочной сеткой). Тщетно пытаясь овладеть приманкой в прямом направлении, осьминог не хватает ее сверху, через край. Правда, по Бойтендийку, некоторые осьминоги все же способны решить несложные задачи обходного пути. При этом, очевидно, большое значение имеет прежний опыт особи. Другие головоногие уступают осьминогу по своим психическим способностям.
Конечно, при оценке подобных экспериментов необходимо иметь в виду, что здесь ставятся биологически неадекватные, а поэтому и неразрешимые задачи: в естественных условиях осьминог никогда не оказывается в ситуации, когда непосредственно зримая жертва оказывается недосягаемой. К тому же задачи обходного пути относятся к разряду весьма сложных - с ними не справляются не только черепахи, но и куры (в биологически несравненно более адекватных условиях).
...
В соответствии с изменением природных условий у позвоночных животных развивается определенное строение тела и нервной системы, а также возникают характерные формы поведения. У рыб, например, условия существования в воде не только создали ряд особенностей строения тела, но и своеобразную инстинктивную деятельность в области размножения, питания и самосохранения.... Поведение рыб в основном инстинктивно и стереотипно. Оно мало и медленно изменяется в индивидуальном опыте. Но, несмотря на то, что передний (большой) мозг у рыб мало развит и что кора мозга отсутствует, рыбы все же способны к усвоению некоторых простейших навыков.
...
Таким образом, на низшем уровне перцептивной психики уже представлены все те прогрессивные признаки, которые характеризуют перцептивную психику вообще, но во многих отношениях поведение относящихся сюда животных носит и примитивные черты, сближающие его с поведением нижестоящих животных. Так, основную роль играет ориентация поведения, по-прежнему, по отдельным свойствам предметов, но не по предметам как таковым. Предметное восприятие явно играет еще подчиненную роль в поведении, в котором преобладают ригидные, жестко запрограммированные, сугубо инстинктивные элементы.
Вместе с тем важно подчеркнуть, что, несмотря на преобладание в поведении врожденных элементов, у рассматриваемых нами таксономических групп животных, в частности насекомых, накопление индивидуального опыта, научение играют существенную роль. При этом в процессах научения наблюдается и определенная противоречивость, сочетание прогрессивных и примитивных черт.
... это никоим образом не означает, что насекомым, как и другим представителям рассматриваемой группы животных, недостает пластичности поведения. Наоборот, у них в полной мере проявляется общая закономерность, что усложнение инстинктивного поведения неизбежно сочетается с усложнением процессов научения (и наоборот). Только такое сочетание обеспечивает подлинный прогресс психической деятельности.
...
Очень важным представляется и то обстоятельство, что впервые у головоногих появляется способность к установлению контактов с человеком, к общению с ним, результатом чего является возможность подлинного приручения этих животных (в отличие от насекомых!).
...
Следующий, высший уровень перцептивной психики включает высших позвоночных: птиц и некоторых млекопитающих. У них уже можно обнаружить элементарные формы мышления, проявляемого в способности к решению задач в практическом, наглядно-действенном плане. Здесь мы отмечаем готовность к научению, к усвоению способов решения таких задач, их запоминанию и переносу в новые условия.


Отчетливая связь между сложностью организации нервной системы и сложностью реагирования организмов удобна для сравнительных оценок в ряде все более усложняющихся механизмов реагирования. Однако, просто число нейронов не может прямо характеризовать сложность, уровень организации нервной системы. Например, если сравнивать сложность только той части нервной системы, которая ответственна за варианты поведения бабочек и муравьев (понятно, что такое выделение очень условно) по числу нейронов, то следует исключить все, что относится к "входным анализаторам" и "мотонейронам" и т.п. Учитывать для такого сравнения можно только количества нейронов непосредственно участвующих в формировании программ реакций.
У бабочек наиболее сильно развиты обоняние и зрение. У некоторых видов есть до 30000 глазков, которые имеют представительство в зрительном анализаторе. У муравьев зрение отсутствует. Кроме того, их хитиновый покров почти лишает чувствительности тело (у бабочек есть тактильные и другие виды рецепторных нейронов, получающих информацию от рецепторов с поверхности тела). Обоняние у муравьев и бабочек примерно соизмеримы по чувствительности и избирательности. Так же у них примерно соизмеримы чувствительность усиков, но у муравьев через них распознается несоизмеримо больше информации (на них основаны символы системы общения). У бабочек некоторое количество нейронов обеспечивает моторику полета, но зато возможности движения по поверхности у них намного беднее. Получается, что муравей, имея большее общее количество нейронов (до миллиона), в то же время имеет и больший процент нейронов, задействованных во внутренних связях определяющих программы поведения. Он, слепой и нечувствительный в своей хитиновой броне, поистине похож на автомат, состоящий почти из одних только поведенческих программ, что и проявляется в намного более сложном поведении и, особенно, в коллективном поведении.

Развитие нервной системы в филогенезе

Нервная система выполняет в организме высших животных ряд функций: анализаторную (анализ поступающей по сенсорным системам информации), моторную (организация ответных движений), интегративную (объединение, связь различных сенсорных и моторных структур нервной системы; формирование временных связей, обучение), организацию психических процессов. Кроме того, нервная система регулирует и интегрирует функции внутренних органов (висцеральная функция).
...
У многоклеточных организмов произошла дифференциация клеток тела по их расположению в теле (наружные, промежуточные и внутренние-, выстилающие внутреннюю полость), так и по функции. Часть поверхностных клеток специализировалась на восприятии внешних воздействий и превратилась в чувствительные (рецепторные). Другие клетки приобрели способность сокращаться и, объединившись, создали мышечные слои. И, наконец, появились клетки, специализированные на передаче возбуждения от рецепторов к мышечным клеткам. Это - нервные клетки. Поскольку мышечные клетки образовали мышечные слои, способные выполнять согласованные сокращения, нервные клетки тоже должны были объединиться в систему для их координации. Так развивается нервная система. Чем более совершенны движения животных, тем лучше развита их нервная система.
...
Совершенствование нервной системы идет по пути централизации клеточных тел и удлинения одного из отростков нервных клеток.
...
Нервная система стала сложнее с переходом от диффузно-узлового типа организации к чисто узловому. При этом тела нервных клеток концентрируются в специальных узлах (ганглиях) , из которых выходят пучки аксонов - нервы. Нервы соединяют узлы между собой, с органами чувств и с эффекторами.
...
У насекомых нервная система кроме головного мозга имеет цепочку парных ганглиев, которые объединяются в крупные узлы, главным образом в грудном отделе. Брюшные узлы выполняют преимущественно висцеральные функции, грудные - моторные функции (организация движения ног и крыльев). Сенсорные же (анализаторные) и интегративные (ассоциативные) функции контролируются у насекомых головным мозгом. Наиболее сложно организован головной мозг перепончатокрылых (осы, пчелы, муравьи). Относительные размеры грибовидных тел у этих насекомых прямо зависят от сложности их поведения. Так, у рыжих муравьев, способных к организации очень сложных форм поведения, грибовидные тела могут составлять половину массы головного мозга; у пчелы - третью часть, а у жука-плавунца - лишь двадцатую.
...
Птицы - особая ветвь эволюции. Обитание их в воздушной среде определило своеобразие моторики. Доминирование дистантного зрительного анализа привело к оригинальной форме головного мозга. Конечный мозг птиц превосходит по относительным размерам и объему мозг рептилий.
...
Головной мозг млекопитающих развивался по пути увеличения относительной площади новой коры и появления складчатости. Так сформировались новые мозговые структуры. Из тела мозжечка низших позвоночных животных развиваются червь и два полушария. Благодаря связям новой коры с полушариями мозжечка, oформилась в особое анатомическое образование ромбовидного мозга его передняя часть, она приобрела вид моста (pons Varolii). Отделившись от продолговатого мозга, он образовал задний мозг. Появились средние ножки мозжечка. Червь и полушария мозжечка испещрены ветвящимися внутри бороздами, что значительно увеличивает площадь его коры. Вырос и его объем мозжечок теперь четко делится на пять отделов. Возникли дополнительные структуры и в среднем мозге: на дорсальной поверхности - заднее двухолмие, в результате чего образовалось четверохолмие; а на вентральной - основание ножек мозга, по которому проходят корково-мостовые и корково-спинномозговые пути. На вентральной стороне продолговатого мозга появились пирамиды, связанные с развитием кортикоспинальных путей.

Для более углубленного сопоставления предлагаются статьи о строении нервной системы некоторых насекомых.

Бабочки или чешуекрылые

Нервная система их (табл. III, рис. 15) состоит из надглоточного узла с большими глазными долями, подглоточного, большей частью двух грудных и четырех брюшных узлов (реже бывают три грудных узла и пять брюшных узлов, напр., у тонкопряда хмелевого, Нерiаtus humuli). У бабочек есть так же, как у большей части насекомых, симпатическая нервная система.

Спариванию у Б. предшествует сближение полов, причем самец старается привлечь к себе самку. Средством к этому у большинства видов является более или менее яркая и красивая окраска самцов, обращающая на себя внимание самок, но иногда имеются и другие приспособления. Так, некоторые бабочки способны воспроизводить звуки, служащие для призыва самок, и снабжены особыми органами, служащими для этой цели…. Отчасти для привлечения самок, отчасти же для защиты от врагов служат пахучие выделения.
… в огромном большинстве случаев вся жизненная деятельность бабочек сводится к размножению.

Муравьи

Муравьи - самое эволюционно продвинутое семейство насекомых с точки зрения поведения, экологии и физиологии. Их колонии представляют собой сложные социальные образования с разделением труда и системами коммуникации, позволяющими особям координировать свои действия при выполнении задач, которые не по силам одному индивиду. Кроме того, многие виды муравьев поддерживают высокоразвитые симбиотические отношения с другими насекомыми и растениями.
В http://www.floranimal.ru/orders/2732.html: Отряд перепончатокрылых насекомых насчитывает около 90 000 видов и по числу видов уступает лишь жукам и бабочкам. К этому отряду относятся как довольно примитивные пилильщики, ложногусеницы которых, похожие на гусениц бабочек, питаются на растениях, так и насекомые с наиболее высокоорганизованной нервной системой и крайне сложной биологией - муравьи, пчелы и осы.

Важная разница между простейшими насекомыми и высшими животными: первые в течение своей жизни не способны к долговременному обучению. Пластичность (обучаемость) их нервной системы, в основном, связана с кратковременными процессами, а не с образованием постоянных связей между нейронами: см. Нервная система виноградной улитки, Пластичность нейронных сетей в цнс виноградной улитки , Физиология насекомых .
Но у насекомых с более высокоорганизованной нервной системой появляются механизмы для изменения эффективности связей сежду нейронами, они могут вырабатывать постоянно сохраняющийся рефлекс: см. Исследователи выработали условный рефлекс у тараканов.

Интеллект муравьев

Оказалось, что при решении сложных задач среди муравьев выделяются постоянные по составу рабочие группы, состоящие из одного разведчика и 4-7 фуражиров.
…у трех видов муравьев с групповой организацией доставки пищи зависимость между временем контакта разведчика с фуражирами и количеством передаваемой информации (числом развилок) близка к линейной… выяснилось, что муравьи способны передавать друг другу довольно много различных сообщений, а время передачи сообщения пропорционально количеству информации в нем.
…муравьи из всех высоко социальных видов обладают развитым символическим языком, причем языком более сложным, чем язык танцев медоносной пчелы; при этом они способны улавливать закономерности и использовать их для увеличения скорости передачи информации.


Нервная система и органы восприятия пчел

В центральной нервной системе пчелы различают головной мозг и брюшную нервную цепочку.
Головной мозг насекомого содержит нейронов больше, чем вся остальная часть центральной нервной системы. Более 90% нейронов центральной нервной системы сосредоточено в мозге. Особенно много их в грибовидных телах и зрительных долях протоцеребрума.
Нервная система
Нервная система регулирует все функции организма, объединяет его в единое целое и является посредником между органами чувств и всеми другими органами. Через органы чувств организм воспринимает информацию из внешней среды, перерабатывает ее в нервных центрах и в соответствии со своим внутренним физиологическим состоянием совершает необходимые целесообразные действия. Нервная система полностью определяет поведение пчел во внешней среде соответственно импульсам, поступившим в нее из органов чувств. У насекомых нервная система сильно дифференцирована, имеет сложное строение и может быть подразделена на три части: центральную, периферическую и вегетативную (симпатическую).
Центральная нервная система
В центральной нервной системе пчелы различают головной мозг и брюшную нервную цепочку.
Головной мозг. Он состоит из надглоточного и подглоточного ганглиев, соединенных между собой тяжами.
Количество нейронов в разных отделах головного мозга у рабочих пчел и трутней (по Виттхгофт, 1967):
Отделы мозгаРабочая пчелаТрутень
Зрительные доли432712807658
Грибовидные тела339488295010
Остальная часть протоцеребрума384705539
Дейтоцеребрум1470216530
В с е г о8253721164737
Основная структурная единица нервной системы пчелы, как и всех насекомых, - нервная клетка, или нейрон. От тела нейрона отходит обычно один длинный неразветвленный аксон и несколько коротких ветвящихся дендритов. Дендрит служит входом нейрона, а аксон - выходом. Аксон подходит к другим нейронам или к исполнительным органам - эффекторам. Наиболее обычными эффекторами служат мышцы или железы.

У пчелы имеются следующие органы чувств: зрение, обоняние, осязание, вкус и слух. …Большинство запахов пчелы различают с такой же чувствительностью, как и человек. Однако, некоторые запахи, имеющие для пчел биологическое значение, они различают значительно лучше человека.

Пчелы обладают способностью четко определять время суток. Так, если выставлять на пасеке сахарный сироп ежедневно в один и тот же час, то пчелы вскоре станут точно прилетать ко времени выставки для них сиропа. Пчелы точно различают время и в условиях искусственного (электрического) освещения, следовательно, это чувство не зависит от местоположения солнца.


До сих пор не удавалось найти нечто в механизмах психических явлений, качественно отличающее человека, от других животных (см. Человек среди животных). Срок эволюции, который предположительно отводится на формирование человека в 50 тысяч лет, безусловно, недостаточен для того, чтобы появилось нечто принципиально новое. Вербальные структуры есть у всех высших животных, асимметрия мозга - тоже (см. Асимметрия мозга), интеллект в вопросах, касающихся специфики существования отдельных животных выше человеческого (например, интеллект выживания волка в лесу). Остается предположить, что и постоянно доминирующие (незатухающие во время сна) мотивации есть не только у человека. Действительно, у многих животных есть сезонные программы поведения, которые по длительности действия превышают текущие потребности. Вот только у человека доминирующая мотивация слишком прихотлива, слишком кажется личностной.
Поведенческое своеобразие каждого вида приспособлено к оптимальному соотвествию условиям существования этого вида и, конечно, у человека в этом плане нет качественных эволюционных преимуществ (см. За различия между человеком и шимпанзе ответственна генная регуляция).

Дополнительно:
  • Эволюция механизмов сознания
  • Энергетический подход к эволюции мозга
  • Двойственность поведения приматов (Энергетический подход к эволюции мозга 2)




  • Обсуждение Еще не было обсуждений.


    Дата публикации: 2003-05-31
    Последнее редактирование: 2018-04-19

    Оценить статью можно после того, как в обсуждении будет хотя бы одно сообщение.
    Об авторе: Статьи на сайте Форнит активно защищаются от безусловной веры в их истинность, и авторитетность автора не должна оказывать влияния на понимание сути. Если читатель затрудняется сам с определением корректности приводимых доводов, то у него есть возможность задать вопросы в обсуждении или в теме на форуме. Про авторство статей >>.

    Тест: А не зомбируют ли меня?     Тест: Определение веса ненаучности

    В предметном указателе: Психология эволюции | Роберт Антон Уилсон | Эволюция жизни | эволюция мира | Эволюция человека | этапы эволюции жизни | Гари Маркус Несовершенный человек. Случайность эволюции мозга и ее последствия. | Горизонтальный перенос генов и его роль в эволюции | К. Вили Нервная система | КЛЕТОЧНАЯ ОРГАНИЗАЦИЯ НЕРВНОЙ СИСТЕМЫ В.В. Жуков, Е.В. Пономарева | Нервная система виноградной улитки | Нервная система и органы восприятия пчел | Общее нервной системы насекомых и позвоночных | Норбеков | Путь дурака | Источники электропитания для д... | Базовые понятия теории адаптивных систем | Гомеостаз и Система значимости | Диссипативные системы | Зоны Системы значимости
    Последняя из новостей: Трилогия: Основы фундаментальной теории сознания.

    Обнаружен организм с крупнейшим геномом
    Новокаледонский вид вилочного папоротника Tmesipteris oblanceolata, произрастающий в Новой Каледонии, имеет геном размером 160,45 гигапары, что более чем в 50 раз превышает размер генома человека.
    Тематическая статья: Тема осмысления

    Рецензия: Рецензия на статью

    Топик ТК: Системные исследования механизмов адаптивности
     посетителейзаходов
    сегодня:00
    вчера:11
    Всего:4115048897

    Авторские права сайта Fornit