Сотрудник французского
Как известно, квантовые («
В привычных для человека диапазонах размеров и температур нулевые флуктуации себя не проявляют. Без учёта этого феномена, однако, невозможно описать многие «тонкие» физические эффекты вроде излучения Хокинга (испускания элементарных частиц чёрными дырами), лэмбовского сдвига (смещения уровней энерги',event)">энергии связанных состояний электрона во внешнем поле) или
Охлаждённое облако атомов рубидия на снимке с 5-микрометровыми пикселами (иллюстрация J. Armijo / Inst. of Optics). |
Г-н Армийо пошёл по другому пути и разработал оригинальную методику прямого обнаружения флуктуаций при наблюдении за охлаждёнными атомами рубидия 87Rb, захваченными в микромагнитные ловушки. Давно установлено, что нулевые флуктуации играют особенно важную роль в низкоразмерных системах (в одномерном случае они, к примеру, могут разрушить дальний порядок и препятствовать бозе-эйнштейновской конденсации даже при T = 0), а потому в экспериментах создавался одномерный атомарный газ.
Охладив атомы, автор определял, насколько хорошо разные участки одномерного облака газа поглощают излучение. Эта операция повторялась несколько сотен раз, после чего г-н Армийо высчитывал флуктуации плотности облака относительно его средней плотности. Такие флуктуации отражали присутствие волн плотности (фононов).
Поскольку температура в опытах снижалась «всего лишь» до 4,7 нК, необходимо было придумать, как отличать обычные тепловые фононы от квантовых. Решение задачи оказалось достаточно простым: французский физик воспользовался тем, что амплитуды квантовых и тепловых флуктуаций по-разному зависят от характерного масштаба длин, на котором исследуется система. Увеличивая этот масштаб — объединяя данные по соседним пикселам на снимках газового облака — и оценивая флуктуации плотности в новых условиях, он доказал, что результаты опыта нельзя представить в чисто классическом виде.
Отчёт, подготовленный экспериментатором, опубликован в журнале
Подготовлено по материалам
Группа учёных из Констанцского университета (Германия) утверждает, что им впервые удалось напрямую измерить квантовые флуктуации вакуума, существующие даже в отсутствие каких-либо полей или частиц. Измерение было проведено электрооптическим методом, применяемым для измерения электрических полей инфракрасного и терагерцового диапазонов. Результаты измерений
Существование квантовых флуктуаций вакуума — одно из главных следствий квантовой природы окружающего нас мира. Оно может быть объяснено на основе
Принцип Гейзенберга, однако, применим и для других объектов, в частности, для электромагнитных волн. Согласно одному из следствий этого принципа, не могут быть абсолютно точно одновременно измерены в данной точке пространства электрическое и магнитное поля. Это означает, что даже в абсолютной пустоте, то есть в вакууме, где оба поля должны быть равны нулю, хотя бы одно из них всегда отлично от нуля. С точки зрения измерительной техники, это приводит к существованию шумов, представляющих собой случайным образом флуктуирующие электрическое и магнитное поля.
Теоретические оценки показывают, что величина квантовых флуктуаций электромагнитного поля очень мала и зависит от размеров измерительных приборов и от диапазона частот, в котором ведётся наблюдение. Это, однако, не помешало измерить их косвенными методами. Первыми это сделали в 1947 году Уиллис Лэмб и Роберт Резерфорд (см.: W. E. Lamb Jr., R. C. Retherford, 1947.
Однако и в эксперименте Лэмба и Резерфорда, и в более поздних экспериментах, например по наблюдению так называемого эффекта Казимира (заключающегося в том, что две параллельно расположенные в абсолютном вакууме проводящие плоскости должны притягиваться друг к другу из-за резонансного взаимодействия с квантовыми флуктуациями), флуктуации измерялись опосредованно — через их влияние на другие объекты.
В свежей работе экспериментаторы из
Метод состоит в пропускании через электрооптический кристалл двух наложенных друг на друга исследуемых импульсов — длинноволнового и оптического (рис. 1). При этом импульсы на входе имеют взаимно перпендикулярные поляризации, и длительность оптического импульса должна быть значительно меньше периода длинноволнового излучения. В этом случае на длине оптического импульса электрическое поле изучаемого импульса остаётся практически постоянным.
В электрооптическом кристалле при наличии внешнего электрического поля происходит анизотропное изменение показателя преломления. То есть кристалл становится двулучепреломляющим для оптического излучения, поэтому его поляризация в кристалле начинает изменяться, превращаясь из линейной в эллиптическую. При этом чем сильнее электрическое поле исследуемого импульса в той точке, где располагался оптический импульс, тем больше и величина эллиптичности вышедшего из кристалла оптического импульса. Поэтому, определяя эллиптичность, можно измерить величину электрического поля.
Измерение эллиптичности проводится стандартным оптическим методом: излучение пропускается сначала через четвертьволновую пластинку, которая меняет его поляризацию на практически круговую, а затем через двулучепреломляющий кристалл, в котором происходит пространственное разделение импульса на два со взаимно перпендикулярными поляризациями. Эти два луча попадают на два фотодиода, между которыми измеряется разность генерируемого фототока. По этой разности и восстанавливается эллиптичность прошедшего оптического импульса.
Подчеркнём, что успешность измерения электрических полей этим методом напрямую зависит от того, насколько короток оптический импульс. В работе использовался импульс инфракрасного света длительностью всего 5,8 фемтосекунд (1 фемтосекунда = 10−15 секунды), это составило всего 1,5 периода световой волны. Этим импульсом измерялись поля с периодом от 8 до 25 фемтосекунд (длиной волны от 2,5 до 7,5 микрон).
Идея работы заключается в том, что даже в отсутствие длинноволнового излучения квантовые флуктуации электрического поля будут приводить к изменению поляризации оптического импульса, которое можно измерить и тем самым определить величину флуктуирующего электрического поля. Квантовые флуктуации, однако, носят случайный характер и проявляют себя в виде шумов. Это означает, что если повторять эксперимент много раз, то измеренное поле будет случайным образом меняться. В среднем оно будет равно нулю, но можно измерить его среднеквадратичное отклонение от нуля.
Проблема заключается в том, что квантовые флуктуации являются не единственным источником шума. Более того, есть более сильные его источники. В частности, в обсуждаемой работе намного больший вклад в шум давал так называемый дробовой шум: из-за квантовой природы света количество регистрируемых фотонов оптического импульса случайным образом меняется от выстрела к выстрелу. Оценки показывают, что в условиях обсуждаемого эксперимента дробовой шум приводил в среднем к отклонениям измеренного поля на величину около 65 В/см, в то время как квантовые флуктуации ожидалась в среднем на уровне 20 В/см.
Чтобы побороть эту проблему, в эксперименте сравнивались между собой случаи, когда присутствует только дробовой шум, и когда присутствует также и шум от квантовых флуктуаций. При этом сравнивалось среднеквадратичное отклонение измеренного поля от нулевого значения. По оценкам, разница между двумя случаями должна была составить величину всего лишь около 4,7%.
Чтобы реализовать случай, когда шум от квантовых флуктуаций отсутствует, экспериментаторы использовали увеличение размера оптического импульса на основе двух различных техник. В первой из них они удлиняли оптический импульс почти в 20 раз, до 100 фемтосекунд, а во втором — смещали электрооптический кристалл из точки фокуса так, что в месте расположения кристалла значительно возрастала ширина импульса (рис. 2). В результате в обоих подходах импульс становился значительно больше размера измеряемых флуктуаций, и суммарный вклад от них равнялся практически нулю (конечно, в вакууме присутствуют флуктуации любого размера, но можно показать, что чем больше их размер, тем меньший вклад они дадут в измеряемый сигнал).
Рис. 2. Иллюстрация принципа усреднения сигнала от квантовых флуктуаций при уширении пучка. Если кристалл находится в фокусе импульса, то ширина пучка мала и в него попадает приблизительно одна флуктуация. Если же кристалл отдаляется от фокуса, то ширина пучка увеличивается, и в него попадает много флуктуаций, которые друг друга компенсируют, давая в сумме практически нуль. Изображение из обсуждаемой статьи в Science |
Оба метода показали, что среднеквадратичное отклонение измеренного поля от нулевого значения, действительно, уменьшается, если шум от квантовых флуктуаций удаляется, и измеренное уменьшение в обоих подходах составило величину около 4%, что достаточно хорошо совпадает с теоретическими оценками.
В заключение отметим, что, хотя результат измерений совпал для двух подходов, использованный метод не лишён недостатков, которые могут поставить корректность эксперимента под вопрос. В частности, не принимавший участия в эксперименте физик Стив Ламоро (
Как бы то ни было, опубликованная работа должна дать толчок к новым экспериментальным попыткам измерить квантовые флуктуации напрямую. Проведённые с большей аккуратностью, они покажут, действительно ли учёные из Констанцского университета зарегистрировали квантовые флуктуации или измеренный ими сигнал имеет более прозаичное происхождение.
Источник: C. Riek et al.
Артем Коржиманов
Рис. 1. Схема электрооптического измерения терагерцового поля. Слева красным показан терагерцовый импульс, зелёным — сверхкороткий оптический импульс. Жёлтая пластинка EOX — электрооптический кристалл, в котором происходит взаимодействие импульсов. Остальная часть схемы предназначена для измерения изменившейся поляризации оптического импульса. Изображение из обсуждаемой статьи в Science