Поиск по сайту
Проект публикации книги «Познай самого себя»
Узнать, насколько это интересно. Принять участие.

Короткий адрес страницы: fornit.ru/6442
или fornit.ru/ax1-55-422

Последовательность развития зон мозга

Использовано в предметной области:
Системная нейрофизиология (nan)
  • раздел: Развитие и регенерация нейросети (nan)


  • С точки зрения онтогенеза функциональной асимметрии полушарий гетерохронность психического развития может объясняться закономерностями возрастной динамики восприятия и мышления, стиля деятельности и типа личности, обусловленных сменой доминирующих межполушарных отношений в процессе формирования психики ребенка. Это имеет отношение и к таким аспектам возрастного развития, как созревание индивидуально-типического когнитивного стиля (предпочитаемых перцептивных стратегий и ведущих стратегий обработки информации), особенности развития общего интеллекта и индивидуальных особенностей личности — сложных и во многом социально обусловленных психических образований, которые своими корнями в онтогенезе связаны с доминирующим в данном возрастном периоде полушарием. В пользу неравнозначности полушарий в разных периодах жизни ребенка свидетельствуют такие клинические факты, как, например, худшие результаты выполнения вербальных тестов при ранних (до 12 мес) левополушарных поражениях по сравнению с аналогичными правополушарными, задержки речевого развития у таких детей, большее нарушение перцептивных функций при правополушарной патологии (особенно зрительно-пространственного восприятия). Существуют электрофизиологические исследования мозга ребенка, показывающие разницу в восприятии вербальных и музыкальных стимулов полушариями, начиная от нескольких недель до 6 мес от рождения. Динамика межполушарных взаимодействий на протяжении всех, и, особенно, относительно поздних в жизни ребенка периодов, не может быть адекватно оценена без учета гетерохронности функций, связанной с синтетическими по генезу психическими видами деятельности, возникающими как результат объединенной работы разных долей в пределах одного полушария (преимущественно передне-задних отношений), а также результатов «надстраивания» морфологически и функционально новых корковых аппаратов над старыми, относительно зрелыми к моменту рождения (вертикальных отношений). Реально мозг — это целостная морфологическая и функциональная система, все звенья которой одновременно, но с разными скоростями на протяжении жизни человека созревают и перекомбинируют свои внутренние связи в зависимости от доминирующих задач в том или ином возрастном периоде, либо в той или иной конкретной ситуации. Подавляющее большинство данных и экспериментальных результатов по выявлению роли правого и левого полушарий головного мозга в когнитивной деятельности свидетельствуют о нарастании левополушарного типа сознания как в онтогенезе, так и в культурной эволюции человечества в целом, что не исключает значения полушарной специализации и межполушарного взаимодействия.

    Все системы мозга, объединенные различными типами волокон, работают по принципу иерархической соподчиненности, благодаря которому одна из систем, доминирующая в конкретный период времени в той или иной психической деятельности, осуществляет управление другими системами, а также контролирует это управление на основе прямых и обратных связей. При этом на уровне макросистем, крупных мозговых блоков, наблюдается относительная жесткость выполняемых ими функций, в то время как на уровне микросистем, представляющих элементы того или иного психофизиологического ансамбля, обнаруживается вероятностность и вариативность связей. Подобная закономерность прослеживается и в работе систем мозга, при анализе их сроков формирования в фило- и онтогенезе. Наиболее рано созревающие участки мозга, связанные с удовлетворением витальных физиологических потребностей организма, имеют жесткую, генетически детерминированную, однозначную функциональную организацию, в то время как более поздние, надстраивающиеся ориентировочные сенсорные, перцептивные и гностические (то есть уже психические) функции обеспечиваются вероятностными пластическими связями разных систем мозга. Благодаря функциональной многозначности, включенность этих участков в общемозговую активность подчиняется конкретной внешней цели, сопряженной с реально имеющимися в данный период созревания ресурсами организма. Параметр пластичности-жесткости может быть прослежен и в различных звеньях любой функции. В еще большей степени это имеет отношение к реализации наиболее тонко дифференцированных ВПФ — прижизненно формирующихся, произвольных по способу осуществления и опосредованных знаковыми системами — сложных форм предметного поведения, чувств, произвольного внимания и т. п. ВПФ имеют свою психофизиологическую основу, то есть являются функциональными системами с многоступенчатым набором афферентных (настраивающих) и эфферентных (исполняющих) звеньев.

    В анатомическом пространстве мозга эта закономерность прежде всего отражается в его вертикальной организации, где каждый очередной «вышележащий» уровень иерархически доминирует над «нижележащим» и сам включается в интегративную деятельность мозга в качестве ансамбля еще большей системы или метасистемы. Конструктивно и функционально с выполнением наиболее сложных форм психической деятельности связаны наиболее поздно созревающие, поверхностные и тонкие слои коры головного мозга. Кроме вертикальной организации, головной мозг имеет и организацию горизонтальную, представленную в основном ассоциативными процессами, как в рамках одного полушария, так и при взаимодействии двух полушарий. Наиболее ярко горизонтальный принцип проявляется в согласованной и взаимодополняющей работе двух полусфер мозга при их известной асимметрии, выражающейся в своеобразной специализации полушарий по отношению к ряду психических процессов. Комбинация вертикально-горизонтальных взаимодействий в сочетании с различной степенью жесткости-пластичности связи ВПФ с различными структурами их материального носителя — мозга, дает обоснование двум основным принципам теории локализации высших психических функций, разработанным в нейропсихологии.

    Принцип системной локализации функций. Каждая психическая функция опирается на сложные взаимосвязанные структурно-функциональные системы мозга. Различные корковые и подкорковые мозговые структуры принимают свое, «долевое» участие в реализации функции, выполняя роль звена более общей единой функциональной системы.

    Принцип динамической локализации функций. Каждая психическая функция имеет динамическую, изменчивую мозговую организацию, различную у разных людей и в разные периоды их жизни. Благодаря качеству полифункциональности, под влиянием новых воздействий мозговые структуры могут перестраивать свои функции.

    Разработка этих фундаментальных для нейропсихологии принципов связана с именами Павлова, Ухтомского, Выготского, Лурия и Анохина. В историческом аспекте по этой проблеме существовали две крайние точки зрения: узкий локализационизм, исходящий из представления о психической функции как о неразложимой на компоненты и жестко связанной с конкретными мозговыми структурами, и эквипотенционализм, трактующий мозг и кору больших полушарий как однородное целое, равнозначное для психических функций во всех своих отделах. В соответствии со второй концепцией поражение любой части мозга должно было бы приводить к пропорциональному ухудшению всех психических функций одновременно и зависеть только от массы пораженного мозга. Фактом, вступавшим в явное противоречие с обоими взглядами, было то, что при локальных поражениях мозга наблюдался высокий уровень компенсации возникших дефектов или замещения выпавших функций другими отделами мозга.

    В соответствии с современными воззрениями или обобщающим принципом системной динамической локализации, ВПФ охватывают сложные системы совместно работающих зон мозга, каждая из которых вносит свой вклад в осуществление психических процессов и которые могут располагаться в совершенно различных, иногда далеко отстоящих друг от друга участках мозга (Лурия). Привлекаемые функциональные системы являются многомерными многоуровневыми констелляциями различных мозговых образований. Отдельные их звенья должны быть увязаны во времени, по скоростям и ритмам выполнения, то есть должны составлять единую динамическую систему. Исследования глубоких мозговых структур показали, что характеристики жесткости-пластичности работы элементов психофизиологических систем могут анализироваться под углом зрения вероятности их привлечения к работе: отдельные элементы ВПФ могут быть «жесткими», то есть принимать постоянное участие в тех или иных актах, а часть — «гибкими» — включаться в работу лишь при определенных условиях. Кроме того, динамическая локализация ВПФ имеет еще и хронологический аспект, отслеживающий изменения их структуры от детского возраста к взрослому.

    Анатомо-морфологическая база высших психических функций

    Мозг человека как специальный орган, осуществляющий высшую форму обработки информации, представляет лишь часть нервного аппарата — системы, специализирующейся на согласовании внутренних потребностей организма с возможностями их реализации во внешней, в том числе социальной, среде. Как и всякая система, она имеет определенную пространственную и функциональную конструкцию, сформировавшуюся в ходе эволюционного процесса. Поэтому диапазон основных параметров функционирования нервной системы в целом отражает вероятностную структуру качества и интенсивности раздражителей, с которыми формирующийся организм сталкивался на протяжении фило- и онтогенеза. Нервная система с входящим в нее мозгом — это иерархически и функционально упорядоченное материальное пространство, являющееся неотъемлемым элементом более общей системы — организма.

    Наиболее дифференцированным отделом ЦНС является кора головного мозга, которая по морфологическому строению в основном делится на шесть слоев, отличающихся по строению и расположению нервных элементов. Прямые физиологические исследования коры доказали, что ее основной структурно-организующей единицей является так называемая кортикальная колонка, представляющая собой вертикальный нейронный модуль, все клетки которого имеют общее рецепторное поле или однородно функционально ориентированы. Колонки группируются в более сложные образования — макроколонки, сохраняют определенный топологический порядок и образуют строго связанные распределенные системы.

    Благодаря исследованиям Бродмана, О. Фогта и Ц. Фогт и работам сотрудников Московского института мозга было выявлено более 50 различных участков коры — корковых цитоархитектонических полей, в которых нервные элементы имеют свою морфологическую и функциональную специфику. [См. Хомская Е. Д. Нейропсихология. — М., 1987.] Кора головного мозга, подкорковые структуры, а также периферические компоненты организма связаны волокнами нейронов, образующими несколько типов проводящих путей, связывающих между собой и различные отделы ЦНС. Существует несколько способов классификации этих путей, наиболее общий из которых предусматривает пять вариантов. Существенным смысловым компонентом подобной схемы является тезис, в соответствии с которым различные типы волокон являются представителями различных систем мозга, обеспечивающими разнообразный психофизиологический эффект их работы. Ассоциативные волокна — проходят внутри только одного полушария и связывают соседние извилины в виде коротких дугообразных пучков, либо кору различных долей, что требует более длинных волокон. Назначение ассоциативных связей — обеспечение целостной работы одного полушария как анализатора и синтезатора разномодальных возбуждений. Проекционные волокна — связывают периферические рецепторы с корой головного мозга. С момента входа в спинной мозг это восходящие афферентные пути, имеющие перекрест на различных его уровнях или на уровне продолговатого мозга. Их задача — трансляция мономодального импульса к соответствующим корковым представительствам того или иного анализатора. Почти все проекционные волокна проходят через таламус. Интегративно-пусковые волокна — начинаются от двигательных зон мозга, являются нисходящими эфферентными и по аналогии с проекционными также имеют перекресты на различных уровнях стволового участка или спинного мозга. Задача этих волокон — синтез возбуждений разной модальности в мотивационно организованную двигательную активность. Окончательной зоной приложения интегративно-пусковых волокон является мышечный аппарат человека

    С точки зрения их топологической организации они также могут рассматриваться и как проекционные, поскольку реализуют принцип строгого соответствия (фактически — связи) между центральными корковыми нейронными группами и периферическими мышечными волокнами. Комиссуральные волокна — обеспечивают целостную совместную работу двух полушарий. Они представлены одним крупным анатомическим образованием — мозолистым телом, а также несколькими более мелкими структурами, важнейшими из которых являются четверохолмие, зрительная хиазма и межуточная масса таламуса. Функционально мозолистое тело состоит из трех отделов: переднего, среднего и заднего. Передний отдел обслуживает процессы взаимодействия в двигательной сфере, средний — в слуховой и слухоречевой, а задний — в тактильной и зрительной. Предположительно большая часть волокон мозолистого тела участвует в межполушарных ассоциативных процессах, регуляция которых может сводиться как к взаимной активации объединяемых участков мозга, так и к торможению деятельности контралатеральных зон. Лимбико-ретикулярные волокна — связывают энергорегулирующие зоны продолговатого мозга с корой. Задача этих путей — поддержание циклов общего активного или пассивного фона, выражающихся для человека в феноменах бодрствования, ясного сознания или сна. Область распространения ретикулярной формации точно не установлена. На основании физиологических данных, она занимает центральное положение в продолговатом мозге, мосте, среднем мозге, в гипоталамической области и даже в медиальной части зрительных бугров. Наиболее мощные связи продолговатый мозг образует с лобными долями. Определенная часть ретикулярных волокон обслуживает и работу спинного мозга.

    Морфогенез мозга определяется размерами и различием по клеточному составу как целого мозга, так и его отдельных структур. Кроме того, полноценный анализ зрелого мозга предусматривает и оценку характера взаимосвязи и способа организации различных частей мозга — нейронных ансамблей (Корсакова, Микадзе, Балашова). Масса мозга как общий показатель изменения нервной ткани составляет при рождении примерно (данные различных авторов колеблются) 390 г у мальчиков и 355 г у девочек и увеличивается соответственно до 1353 и 1230 г к моменту полового созревания. Наибольшее увеличение мозга происходит на первом году жизни и замедляется к 7-8 годам, достигая максимальной массы (примерно 1400 г) у мужчин к 19—20, а у женщин — к 16-18 годам. При рождении у ребенка полностью сформированы подкорковые образования и те области мозга, в которых заканчиваются нервные волокна, идущие от периферических частей анализаторов. Остальные зоны еще не достигают необходимого уровня зрелости, что проявляется в малом размере входящих в них клеток, недостаточном развитии ширины их верхних слоев, выполняющих в дальнейшем самую сложную ассоциативную функцию, незавершенностью в развитии проводящих нервных волокон. Скорость роста коры во всех областях мозга в целом наиболее высока в первый год жизни ребенка, но в разных зонах она заметно отличается. К 3 годам происходит замедление роста коры в первичных отделах, а к 7 годам — в ассоциативных. У трехлетних детей клетки коры уже значительно дифференцированы, а у 8-летнего мало отличаются от клеток взрослого человека. По некоторым данным от рождения до 2 лет происходит активное образование контактов между нервными клетками (через синапсы) и их количество в этот период выше, чем у взрослого человека. К 7 годам их число уменьшается до уровня, свойственного взрослому. Более высокая синаптическая плотность в раннем возрасте рассматривается как основа усвоения опыта. Исследования показали, что процесс миелинизации, по завершению которого нервные элементы готовы к полноценному функционированию, в разных частях мозга также проходит неравномерно. В первичных зонах анализаторов он завершается достаточно рано, а в ассоциативных — затягивается на длительный срок. Миелинизация двигательных корешков и зрительного тракта завершается в первый год после рождения, пирамидного тракта, задней центральной извилины (в которой осуществляется проекция кожной и мышечно-суставной чувствительности) — в 2 года, передней центральной извилины (начала двигательных путей) — в 3 года, слуховых путей — в 4 года, ретикулярной формации (энерго- и ритморегулирующей системы) — в 18 лет, ассоциативных путей — в 25 лет. Формирование большинства функциональных мозговых структур, относительно надежно способных реализовывать ту или иную психическую или психофизиологическую функцию в меняющихся условиях среды — нейронных ансамблей, заканчивается в 18 лет, кроме лобной области, где этот процесс завершается к 20 годам, а в префронтальных участках, по некоторым данным, и позднее.

    С точки зрения функциональных возможностей мозга раньше всех в эмбриогенезе закладываются предпосылки для становления кожно-кинестетического и двигательного анализаторов. В кожно-кинестетическом анализаторе первые два года — это этап формирования целевых специализированных действий. Способность к тонкому анализу проприоцептивных (кинестетических) раздражений появляется с 2-3 месяцев и развивается до 18-20 лет.

    Слуховые рецепторы начинают функционировать сразу после рождения, а на стыке 1 и 2 лет происходит усиленное образование условных рефлексов на речь. Тонкая дифференцировка звуковых раздражителей продолжается до 6-7 лет. Анализ вызванных потенциалов в корковых полях, вовлекаемых в зрительное восприятие, показывает, что специализация полей в первые 3-4 года невелика. В дальнейшем она нарастает и достигает наибольшей выраженности к 6-7 годам. Это позволяет рассматривать возраст 6-7 лет как сенситивный в становлении системной организации зрения (условные рефлексы со слухового анализатора начинают вырабатываться раньше, чем со зрительного). Ассоциативные отделы мозга прогрессируют поэтапно — «пик» первого этапа примерно совпадает с 2 годами, а второго — с 6-7 годами. Наиболее медленным темпом развития характеризуются, как уже указывалось, лобные отделы мозга, функцией которых является произвольная (в том числе и опосредованная речью) регуляция всех видов психической деятельности.

    Функциональные блоки мозга. На основе изучения нарушений психических процессов при различных локальных поражениях центральной нервной системы Лурия разработал общую структурно-функциональную модель мозга как субстрата психики. Согласно этой модели весь мозг может быть разделен на три основных блока, характеризующихся определенными особенностями строения и ролью в исполнении психических функций.

    1-й блок — энергетический — включает ретикулярную формацию ствола мозга, неспецифические структуры среднего мозга, диэнцефальные отделы, лимбическую систему, медиобазальные отделы коры лобных и височных долей (рис. 16).

    Рис. 16. Функциональные блоки мозга — 1-й блок (по Лурия).

    Блок регулирует общие изменения активации мозга (тонус мозга, необходимый для выполнения любой психической деятельности, уровень бодрствования) и локальные избирательные активационные изменения, необходимые для осуществления ВПФ. При этом за первый класс активаций несет ответственность преимущественно ретикулярная формация ствола мозга, а за второй — более высоко расположенные отделы — неспецифические образования диэнцефального мозга, а также лимбические и корковые медиобазальные структуры.

    Ретикулярная формация (РФ) обнаружена в 1946 г. в результате исследований американского нейрофизиолога Мегоуна, который показал, что эта клеточная функциональная система имеет отношение к регуляции вегетативной и соматической рефлекторной деятельности. Позднее совместными работами с итальянским нейрофизиологом Моруцци было продемонстрировано, что раздражение ретикулярной формации эффективно влияет и на функции высших структур мозга, в частности коры больших полушарий, определяя ее переход в активное, бодрствующее или в сонное состояние. Исследования показали, что РФ занимает особое место среди других нервных аппаратов, в значительной мере определяя общий уровень их активности. В первые годы после этих открытий было широко распространено представление, что отдельные нейроны РФ тесно связаны друг с другом и образуют однородную структуру, в которой возбуждение распространяется диффузно. Однако позднее выяснилось, что даже близко расположенные клетки РФ могут обладать совершенно различными функциональными характеристиками. РФ расположена на всем протяжении ствола — от промежуточного мозга до верхних шейных спинальных сегментов. Она представляет собой сложное скопление нервных клеток, характеризующихся обширно разветвленным дендритным деревом и длинными аксонами, часть которых имеет нисходящее направление и образует ретикулоспинальные пути, а часть — восходящие. РФ взаимодействует с большим количеством волокон, поступающим в нее из других мозговых структур — коллатералями проходящих через ствол мозга сенсорных восходящих систем и нисходящими путями, идущими из передних отделов мозга (в том числе из двигательных зон). И те и другие вступают с РФ в синаптические связи. Кроме того, многочисленные волокна поступают к нейронам РФ из мозжечка.



    Источник: Карвасарский Б. Д., под ред. - Клиническая психология, -Анатомо-морфологическая база высших психических функций
    Дата создания: 07.10.2015

    Относится к аксиоматике: Системная нейрофизиология.


    Другие страницы раздела "Развитие и регенерация нейросети":
  • Нейроны рождаются и растут под присмотром молекулярной «няньки»
  • Нейрогенез в гиппокампе для поддержки новых образов
  • Адаптивность и запоминание последовательности событий
  • Нейрогенез в центральной нервной системе и перспективы регенеративной неврологии
  • Китаянка, родившаяся без мозжечка, узнала об этом в 24 года
  • Нейрогенез как адаптивная функция мозга
  • Нейрогенез у взрослых
  • Впервые открыт механизм восстановления нервных клеток после инсульта
  • Нейрогенез в гиппокампе взрослых людей
  • О нейрогенезе
  • Гормональная активация нейрогенеза
  • Периоды развития зон мозга
  • Функции новых клеток в мозге
  • Синапсы возникают и исчезают даже в мозгу взрослого человека
  • Взрослый нейрогенез
  • Что происходит в случае нарушения нейрогенеза в гиппокапмпе?

    Чтобы оставить комментарии нужно авторизоваться:
    Авторизация пользователя
  • Активность
    Главная
    Темы
    Показы
    Полезное
    О сайте
    Яндекс.Метрика