Ознакомьтесь с Условиями пребывания на сайте Форнит Игнорирование означет безусловное согласие. СОГЛАСЕН
ВХОД
 
 
Короткий адрес: fornit.ru/node655

Раздел «Дополнительные пояснения»

Модель произвольной адаптивности МВАП

Доступ для всех
Темактика: Лекторий для «Модель произвольной адаптивности МВАП»

Лекторий школы «Модель произвольной адаптивности МВАП»

Здесь поясняется работа схемы компаратора на транзисторе в модели нейрона.

 

Мы можем смоделировать функциональность нейрона так:

 

 

 

Здесь C – конденсатор, накапливающий заряд, N– компаратор, выходной сигнал которого вызывает срабатывание ключа K, который замыкает обкладки конденсатора, разряжая его до нуля, после чего компаратор опять перестает выдавать сигнал и ключ размыкается (роль ключа выполняет мембрана, мгновенно становящаяся прозрачной для ионов и разность потенциалов на ней тут же компенсируется). На выходе компаратора получаются прямоугольные импульсы напряжения с частотой заряда конденсатора до порога срабатывания компаратора.

На конденсаторе получается пилообразное нарастание напряжения с некоторым временем спада до нуля, за которое на выходе компараторе возникают положительные прямоугольные импульсы.

 

Если бы не было нейрона, то конденсатор просто зарядился бы до максимума +питания и так остался с высоким напряжением на нем. Но нейрон разряжает его всякий раз, как только потенциал на конденсаторе превысит его порог срабатывания.

Если использовать идеальный компаратор (есть такие микросхемы) то схема будет выглядеть так:

 

Идеальный компаратор никак не вмешивается своими входами в работу схемы потому, что входное сопротивление у него бесконечно большое. Т.е. он просто следит за потенциалами на его входах: опорном напряжении Uпорога, сравнивая его с нарастающим напряжением на конденсаторе. Конденсатор совершенно свободно заряжается, не подозревая, что его измеряют.

Если опорное напряжение будет 5 вольт, то компаратор сработает как только напряжение на конденсаторе достигнет 5 вольт.

Входы усилителя помечены + как неинвертирующий и – инвертирующий, т.е. относительно – входа и сравнивается потенциал на + входе, при превышении которого на выходе возникает высокое напряжение импульса на время разрядки конденсатора до порога.

Неинвертирующий вход – такой, что сигнал превышения порога (на выходе) будет иметь ту же полярность, что и сигнал на входе: на входе он увеличивался до порога, значит на выходе он станет + (нарисованы импульсы положительного напряжения).

Т.к. компаратор никак не влияет на зарядку конденсатора, нам нужно сделать так, чтобы при срабатывании компаратора разрядился конденсатор. Для этого мы ставим разрядный ключ на транзисторе К. Пока транзистор закрыт, его все равно что нет, он не мешает заряжаться конденсатору. Но стоит его открыть, как он превращается в проводник, как гаечный ключ, брошенный на клеммы аккумулятора. Транзистор открывается положительным потенциалом на своем входе, превышающим его порог открывания (напряжение отсечки). Мы поставили резистор, ограничивающий ток базы, просто чтобы не повредить транзистор (больше нет задачи у этого резистора).

Положительные импульсы с выхода компаратора, как только они появляются, превышают напряжение открывания транзистора К (напряжение отсечки), транзистор открывается, становясь проводником и разряжает конденсатор. После этого компаратор опять на выходе имеет низкий уровень сигнала, который закрывает транзистор и конденсатор опять начинает заряжаться.

Эта причинная логика достаточно ясна, она следует из того как идет процесс зарядки конденсатора и его принудительной разрядки.

 

В лекции компаратор был сделан всего на одном транзисторе. Он не идеальный, но нам в принципе пойдет. Опорное напряжение мы подаем на его эмиттер, пусть будут те же +5 вольт.

Закрытый транзистор тоже не влияет на заряд конденсатора и сработает, как только будет достигнуто напряжение открывания. И тогда на выходе такого каскада возникнет низкий потенциал потому, что ставший проводящим транзистор подключит к нему источник питания в его эмиттере.

Получается, что на выходе транзистора появляется минус, когда на входе возрос плюс, т.е. он действует как инвертор. Но ключ-то открывается плюсом. Значит, нам нужно поставить еще один инвертор перед ключом, чтобы там появлялся плюс когда нужно разрядить конденсатор. 

Здесь оба транзистора работают в режиме ключа, один сравнивает напряжение на конденсаторе с напряжением порога своего эмиттера и когда оно превышает его, открывается, закрывая следующий транзистор и тогда + выходное напряжение открывает ключ K, разряжающий конденсатор.

Кроме того, дополнительный транзистор выполняет еще одну функцию. Ключ должен быть закрыт вначале процесса заряда, но напряжение на выходе первого транзистора меняется (при его переключении) от +5 до + питания, а +5 вольт – тоже открывающее напряжение для К, который закрываются при меньшем, чем 0,5 вольта потенциале. Второй транзистор при переключении меняет потенциал на выходе (на своем резисторе коллектора) от 0 до + питания, что и требуется.

Резисторы 1000 и 50 ом обеспечивают рабочие напряжение включения-выключения на базе второго транзистора.

 

Участник задал вопрос по схеме:

 

 

В схеме непонятно, куда и как движется ток и какие претерпевает при этом изменения. Ну вот для начала конкретный вопрос: 

Три плюса - это источники тока, приложенные к нейрону (условно пункт 1). Что дальше происходит с этим током, куда он движется?  В конденсатор или компаратор? Что является пунктом 2?”

 

Хорошей подсказкой является комментарий Айка в дневнике от 2018-11-01 03:19:12, который я тоже прокомментировал.

Но в вопросе было непонятно “куда и как движется ток” в этой схеме. Тут явная моя недосказанность (я просто не могу все учесть, сорри). Я не сказал, что транзисторы по своему входу почти не потребляют тока (а есть такие, что вообще не потребляют), т.е. у них настолько высокое входное сопротивление в закрытом состоянии, что они спокойно позволяют заряжаться конденсатору, не влияя на это. Так же никак не влияет и закрытый транзистор (К), подключенный к конденсатору коллектором, чтобы в нужный момент открыться и разрядить его. Можно сказать, что закрытого транзистора как бы и нет в схеме и рассматривать потенциалы без его учета.

Тогда мы получаем просто заряд конденсатора через резисторы от источников + напряжения.

(Время, за которое конденсатор зарядится прикидывается по формуле T=R*C, я давал эту формулу. В данном случае мы имеем 3 штуки R, которые заряжают конденсатор до напряжения 0.7 от + источника, и если + одинаковые и Rодинаковые, то заряжают в 3 раза быстрее.)

Закрытый первый транзистор означает, что на резисторе в его коллекторе будет + напряжения питания, который приложится к базе второго транзистора через делитель напряжения 1000 и 50, который поделит напряжение на базе в 20 раз. Это значит, что второй транзистор будет открыт, если напряжение питания равно 10 или больше вольт при пороге его открывания (Uотсечки) 0,5 вольта.

Конденсатор будет заряжаться не до напряжения +входных резисторов, а пока не будет достигнут открывающий первый транзистор потенциал, т.е. до Uпорога (пусть будет +5 вольт) + Uотсечки транзистора (Uотсечки небольшое, например, = 0,5 вольта). После этого первый транзистор резко откроется (резко потому, что нет никакой обратной связи, чтобы сбалансировать открывающий потенциал), т.к. он сработает как ключ.

Когда первый транзистор откроется, он станет просто проводником и его коллекторному резистору приложится Uпорога, например +5 вольт. При +5 вольтах на конце делителя, на базе второго транзистора станет 5/20=0,25 вольт, что меньше напряжения отсечки и второй транзистор закроется, т.е. он как бы перестает существовать в схеме. На его коллекторном резисторе станет напряжение питания, которое через резистор приложится к ключу К, резко его открыв. Конденсатор разрядится, тем самым закрыв первый транзистор, после чего ключ отпустит его и конденсатор опять начнет заряжаться.

Можно заметить, и это было сказано в лекции, что транзисторы в таком включении инвертируют сигнал на своих входах: если на входе низкий сигнал, то на выходе – высокий и наоборот.

 

Мы имеем отрицательную обратную связь через замкнутый круг каскадов (транзисторных модулей). Каждый из каскадов инвертирует сигнал так, что данное число каскадов приводит к инвертированному отклику в точке замыкания кольца связей. Если бы не было задержки во всей этой цепи, эта связь бы привела к некоему равновесному состоянию, несмотря на общей очень высокий К усиления (у каждого “обычного” транзистора реальный К бывает не ниже 50,  а общий == 50*50*50 ==  125000). Никакого заряда конденсатора на входе не было бы, он зависнет на каком-то напряжении близком к Uпорога+U отсечки первого транзистора. Но задержка есть и при таком большом К усиления за ее время ключ К успеет сильно разрядить конденсатор. Время такой задержки и определит очень короткую ширину импульса. Поэтому в последней схеме мы вводим гистерезис порога срабатывания первого транзистора.

 

Стоит не забывать, что транзистор может работать как ключ (или открываться или закрываться) и в линейном режиме, когда его сопротивление принимает некое промежуточное состояние. Просто подбирая потенциал на входе заставить работать транзистор линейно практически невозможно, граница переключения очень резка из-за высокого коэффициента усиления транзистора. Линейный режим устанавливают с помощью обратной связи, как это описывалось в самом начале лекции, например:

   или так: