Автор:
|
Результаты первых трех лет работы Большого адронного коллайдера не продемонстрировали никаких признаков существования суперсимметрии, разочаровав тем самым многих физиков. Насколько критичны эти данные для самой идеи суперсимметрии и для различных ее моделей? Как теперь физикам оптимизировать поиск суперсимметрии в будущих данных LHC? Первоначальные ожидания от результатов LHC были очень радужными; всерьез рассматривалось развитие событий, когда фейерверк новых эффектов начнется с первых же недель работы коллайдера на расчетной энергии. Реальность, однако, оказалась отрезвляющей: после трех лет работы LHC Налицо кризис суперсимметричных моделей. Насколько разрушительны отрицательные данные LHC для суперсимметрии? Какие модели закрыты, а какие нет? Можно ли совместить суперсимметричные модели с нынешними данными, и если да, то чем при этом придется пожертвовать? Наконец, требуется ли оптимизировать задачу поиска суперсимметрии на следующий сеанс работы коллайдера? Обсуждения этих вопросов стали особенно бурными в последний год, по мере того как ударными темпами росла статистика данных на LHC. Здесь мы попробуем обрисовать общую ситуацию, сложившуюся на сегодняшний день. Главная проблема с поиском суперсимметрии — головокружительное количество вариантов суперсимметричных моделей, а значит, и огромный набор возможностей того, как именно они будут проявляться в эксперименте. Пока суперсимметрия остается точной симметрией, суперсимметричный мир элегантен и относительно прост. Если дело так и обстоит, то только при исключительно высоких энергиях. Но в нашем низкоэнергетическом мире — даже в момент протонных столкновений на LHC! — эта изначальная суперсимметрия нарушена. В результате теория предсказывает большое число суперчастиц (частиц-суперпартнеров обычных частиц), массы и взаимодействие которых могут быть почти произвольными. Теория не говорит, какие из частиц будут легче, какие тяжелее, сколько времени какие из них будут жить, какие у них будут наиболее вероятные процессы рождения и распада. Подчеркнем, что даже перечисление всех сколько-нибудь различающихся вариантов суперсимметричных теорий является совершенно неподъемной задачей. Например, в самой простой реализации идеи суперсимметрии — минимальном суперсимметричном расширении Стандартной модели (MSSM) — имеется 105 свободных параметров (см.: К счастью, подавляющая часть всех таких вариантов сильно расходится с опытными данными. Но задача выбрать все те, которые согласуются, не проще. Выходом будет попытка сформулировать и тщательно проанализировать нескольких конкретных и очень ограниченных вариантов суперсимметричных теорий. Эти модели должны, с одной стороны, удерживать основные черты суперсимметрии и при этом не входить в явное противоречие с опытом, а с другой стороны, должны предоставить свободу лишь очень малому количеству параметров. Только в этом случае появляется разумный шанс просканировать всё пространство параметров, разбить его на области, различающиеся по физическим последствиям, провести подробные вычисления и сделать предсказания для эксперимента. Несколько таких вариантов стали популярны уже давно; другие вошли в моду только в последние годы: Подчеркнем, что вариация свободных параметры в каждой модели не просто слегка меняет предсказания для рождения и распада суперчастиц. Она может полностью перекроить всю картину процессов. Поэтому в рамках каждой модели всё равно остается довольно большой (или в случае pMSSM — очень большой) набор возможностей, который надо изучать индивидуально. Общая методика поиска была обрисована на страничке Обратимся теперь к текущей ситуации в свете данных LHC. К настоящему времени на Большом адронном коллайдере получено три типа данных, ограничивающих суперсимметрию: Прямые поиски суперчастиц до сих пор дают отрицательный результат во всех проверенных типах процессов (см. сводные графики на страничке Бесчисленное множество моделей
Суть экспериментального поиска
Обзор экспериментальных данных
|
Наибольшие ограничения по массе были получены для скварков и глюино (суперпартнеров кварков и глюонов); нижние пределы на их массы уже превышают 1 ТэВ. Это и неудивительно, поскольку они участвуют в сильном взаимодействии, и значит, им проще рождаться в столкновении протонов. При этом скварки здесь относятся только к первым двум поколениям (то есть это суперпартнеры легких кварков). Ограничения на топ-скварки — или, как чаще говорят, «стопы» — меньше, в районе 500–600 ГэВ, просто из-за того, что труднее анализировать их распады. Ограничения на массы суперпартнеров лептонов (слептонов) и нейтральных частиц (нейтралино) заметно хуже и редко превышают 300 ГэВ. При этом легчайшая из нейтралино может даже быть совсем легкой. Будучи нейтральной и стабильной частицей, она просто улетает и не детектируется. Она является популярным кандидатом в частицы темной материи; ограничения на ее свойства могут следовать из космологии, а не из коллайдерных поисков. Свойства хиггсовского бозона, измеренные на LHC (см. сводку данных на страничке Сверхредкие распады мезонов полезны тем, что эти процессы в силу разных причин практически не хотят происходить за счет обычных взаимодействий известных частиц. Поэтому если тот же распад будет вызывать и суперсимметрия, то она может сильно изменить вероятность распада относительно предсказаний Стандартной модели. Распад Bs → μ+μ–, о котором Тут надо сказать, что когда результат LHCb был обнародован, многие поспешили заявить, что он противоречит суперсимметрии. Вовсе нет. Отличие от стандартной вероятности распада аж в несколько раз — а именно это пока закрыто экспериментом — возникает лишь в небольшой части всех изученных вариантов. В других моделях эти отличия могут составлять, скажем, 10% или еще меньше, и такой результат пока что вполне согласуется с измерениями. В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии. Из предыдущего обсуждения уже ясно, что это лихое заявление неверно. Суперсимметрия может реализоваться в нашем мире самыми разными способами, и никто не утверждает, что все они одинаково легко видны или вообще могут проявляться на LHC. Отсутствие сигналов суперчастиц на LHC ни в коем случае не отменяет предположение, что суперсимметрия в каком-то виде является частью реальности. Закрывается ли тогда минимальная суперсимметричная модель (MSSM)? Тоже нет. Конечно, область параметров, согласующихся со всеми данными, сильно сократилась по сравнению с ситуацией до LHC, но она по-прежнему остается большой и не до конца исследованной. Та же модель pMSSM, не говоря уже о более свободных вариантах MSSM, легко предоставляет примеры, согласующиеся со всеми экспериментальными данными. Каков тогда вердикт в случае очень ограниченных моделей, например CMSSM или NUHM? Год назад было впечатление, что такие модели действительно вот-вот закроются (см.: Возможно, этот результат временный, и данные следующего этапа LHC вкупе с неколлайдерными экспериментами (например, Итак, модели с легкими суперчастицами и, как следствие, наиболее яркими эффектами не оправдались. Но с другой стороны, сами модели еще вовсе не закрыты. Следующий сеанс работы LHC сможет изучить их намного лучше — как из-за повышенной энергии, так и просто благодаря десятикратно возросшей статистики. Что теперь следует предпринять теоретикам, которые хотят оптимизировать поиски, улучшить прозорливость LHC, а также сделать интерпретацию данных более надежной? Одно направление уже было упомянуто выше. Пространство параметров ограниченных моделей (CMSSM, NUHM) следует изучить вдоль и поперек. Это позволит избежать «открытий», когда поначалу кажется, что экспериментальные данные «хоронят» модель, но при более внимательном анализе она оказывается пока жизнеспособной. Другое направление — разработка опорных моделей в рамках pMSSM и других более свободных реализаций суперсимметрии. Пространство параметров здесь будет огромным, поэтому надо попытаться найти методику, которая, с одной стороны, не захлебывалась бы избытком вариантов, а с другой стороны, не попустила бы важные скрытые «континенты» на карте этой модели. Примером такого исследования является статья Последствия данных LHC для суперсимметричных моделей
Закрывает ли LHC суперсимметрию?
Что теперь стоит делать теоретикам?
|
Если отвлечься от технических вопросов, то очень злободневным предметом для обсуждения является понятие естественности теории — «естественной» в плане объяснения численных величин. Теория считается естественной, если она не требует какого-то слишком аккуратно и беспричинно подстроенного совпадения численных параметров. Скажем, если измеренное на опыте число «1» получается в рамках теории в виде компенсации двух чисел «3» и «–2», имеющих разное происхождение, то это нормально. Но если одно из чисел оказывается равно миллиону, а второе мы не знаем, то мы вынуждены предположить, что второе число равно «–999999». Всё бы ничего, но только получается, что оно по модулю аномально точно подстроено к первому. Если внутри теории для этого нет причин, то такая теория воспринимается как противоестественная. Главным камнем преткновения для суперсимметричных теорий (ровно как и для любых других!) является объяснение «невыносимой легкости» хиггсовского бозона. Собственно, физики изначально надеялись на модели с легкими суперчастицами, потому что они объясняли массу хиггсовского бозона очень естественным образом. Нынешние ограничения LHC эту идиллию нарушают. Хоть суперсимметричные модели и формально не закрыты, в них приходится предполагать компенсацию на уровне 1% и даже точнее. Насколько серьезной проблемой является потеря естественности? Неизвестно, ведь это очень субъективный критерий! Может быть, компенсация на уровне 0,1% должна считаться приемлемой, а может быть, это вообще не является объективно научным принципом. Недавние рассуждения на эту тему вообще и в применении к суперсимметрии можно найти в статьях Результаты первых трех лет работы LHC ограничивают суперсимметричные модели намного сильнее, чем все эксперименты до сих пор. Они, однако, ни в коем случае незакрывают суперсимметрию. Более того, сейчас выясняется, что даже самые ограниченные ее варианты при каких-то параметрах всё еще жизнеспособны; более свободные модели можно согласовать с данными без особых проблем. Возникает, правда, трудность с естественностью теории, но как ее воспринимать, пока толком не понятно. Вторая фаза работы Большого адронного коллайдера станет новым существенным этапом в поиске суперсимметрии. Если LHC так и не найдет никаких ее проявлений, это уже будет иметь более серьезные последствия для ограниченных моделей, но формально не закроет саму идею. Вопрос о естественности теории станет еще острее, и к каким выводам придут тогда теоретики, можно лишь предполагать. См. также:Итоги
1)
2)
3) S. P. Martin. A Supersymmetry Primer //
4)
5) J. L. Feng, J.-F. Grivaz, J. Nachtman. Searches for Supersymmetry at High-Energy Colliders // Rev. Mod. Phys. 82, 699–727 (2010) [
Анонсы новостей ![]() |
Критические периоды развития у человека и вундеркинды Делаются определённые обобщения, коррелирующие с моделью представлений об организации механизмов психики МВАП: Критические периоды развития у человека и вундеркинды. 13-12-2020г. |
Обобщение материалов исследований сетчатки глаза Сетчатка: Обобщение материалов исследований сетчатки глаза. 07-11-2020г. |
Проблемы академической науки Безынициативность в отсутствие личного интереса, план по валу статей, все большая коммерческая составляющая и многое другое: Проблемы академической науки. 11-10-2020г. |
Ориентировочный рефлекс Обобщение фактических данных исследований по функции и механизмам ориентировочного рефлекса – границы между рефлексами и сознанием: Ориентировочный рефлекс. 20-09-2020г. |
Колонки новой коры Обобщение фактических данных исследований по кортикальным колонкам новой коры: Колонки новой коры. 29-08-2020г. |
Ячеистая структура нейросети Обобщения серии экспериментов с разными типами схем соединений элементов нейросимулятора в виде ячеистых структур: Ячеистая структура нейросети. 02-08-2020г. |
Анонс предметной области: «Схемотехника адаптивных нейросетей» Эта программная статья анонсирует формирование среды коллективного исследования на сайте Форнит : Анонс предметной области: «Схемотехника адаптивных нейросетей». 19-07-2020г. |
Конструктор нейросхем Для тех, кто желает развить навыки схемотехнического мышления в игровом режиме и лучше понять работу природных нейросетей: Конструктор нейросхем. 04-07-2020г. |
Деменция Деменция как норма индивидуальной адаптивности: Деменция. 19-06-2020г. |
Книга «Что такое Я - схемотехнический подход» Содержание книги основывается на постулате, что природная нейросеть мозга является схемотехнической структурой - в точности, как это можно сказать про схемотехнику электронного прибора - при всей огромной разнице в способах реализации. Книга «Что такое Я - схемотехнический подход». 11-06-2020г. |
|
Рис. 1. Пример процесса рождения и каскадного распада суперсимметричных частиц в столкновении протонов. К сожалению, несмотря на многочисленные поиски следов таких процессов на Большом адронном коллайдере, ничего четко указывающего на суперсимметрию пока не найдено.Источник изображения