Автор: Роман Иванов
Международная группа учёных из Университета Делавэра (США) и Университета Силезии (Польша) под руководством Кшиштофа Залевича разработала и опробовала более точный метод предсказания энергии взаимодействия больших молекул. Результаты работы опубликованы в Journal of Chemical Physics.
Если образно представить себе две молекулы в роли пары, участвующей в «свидании вслепую», то метод (для краткости назовем его УД-методом), разработанный американскими физиками и протестированный польскими химиками, позволяет более точно предсказывать их потенциальную энергию притяжения или отталкивания. Этот тип взаимодействия известен в химии как силы Ван-дер-Ваальса.
Учёные утверждают, что УД-метод способен улучшить существующую теорию, позволив более точно рассчитывать энергию ван-дер-ваальсовых взаимодействий между двумя молекулами, находящимися в нескольких ангстремах друг от друга. Существующая теория, применимая к большим молекулам, способна построить модель их взаимодействия только в том случае, если расстояние между молекулами не превышает 1 Å, что, увы, не имеет даже теоретического смысла, поскольку, например, длина С–С-связи равна примерно 1,5 Å, а связи H–H — 0,74 Å (речь, по-видимому, идёт об очень популярной теории функционала электронной плотности (DFT), которая поддерживается всеми основными программами квантовомеханических расчетов в химии, но, к сожалению, не даёт удовлетворительных результатов для некоторых случаев специальных взаимодействий, например, силы Ван-дер-Ваальса). То есть для использования существующей теории необходимо вообразить две молекулы, сблизившиеся на расстояние, которое в полтора раза меньше, чем длина углеродной связи. Да, на таких расстояниях нужно рассматривать уже не ван-дер-ваальсовые, а ковалентные взаимодействия. С другой стороны, обычная длина водородной связи, являющаяся примером ван-дер-ваальсового взаимодействия, составляет около 2 Å и более, в зависимости от взаимодействующих молекул.
По словам разработчиков, УД-метод расчёта корреляций в движениях электронов в ван-дер-ваальсовом кластере (что технически можно описать как «метод бездисперсионного функционала электронной плотности, совмещённый с дисперсионным методом», dlDF+D) генерирует более точные предсказания для взаимодействия больших молекул, чем любые другие опубликованные подходы (опять же речь, по-видимому, идёт о методе DF и многочисленных неудовлетворительных попытках его доводки именно для случаев ван-дер-ваальсовых взаимодействий). Таким образом, учёные надеются, что их работа найдёт применение в квантовомеханических расчетах взаимодействий внутри кластеров и конденсированных фаз, включающих жидкости и твёрдые тела.
Одним из важнейших примеров применения нового метода в химии и медицине может стать область, занимающаяся проблемой поиска наиболее подходящих форм и составов лекарственных средств для достижения их наибольшей эффективности в расчёте на миллиграмм активного компонента. Так, многие биологически активные вещества способны кристаллизоваться в разных формах в зависимости от выбранных условий. Получившиеся кристаллы часто обладают настолько разной энергией растворения, что одна форма кристалла может вообще не растворяться и выводиться из организма без всякой пользы, а другая растворяется слишком быстро, создавая угрозу токсического отравления. Такое явление в медицинской химии и материаловедении называют полиморфизмом. Так вот, предлагаемый метод, по-видимому, способен точно предсказывать, как и в какой форме будет кристаллизоваться данное вещество в данных условиях. Это должно обеспечить колоссальную экономию времени и денег, необходимых на поиск и исследование полиморфов методом научного тыка. Даже такое простое вещество, как ацетаминофен (парацетамол, тайленол, цитрамон), имеет несколько полиморфов, терапевтические свойства которых сильно различаются.
Подготовлено по материалам Университета Делавэра.
Анонсы новостей ![]() |
Критические периоды развития у человека и вундеркинды Делаются определённые обобщения, коррелирующие с моделью представлений об организации механизмов психики МВАП: Критические периоды развития у человека и вундеркинды. 13-12-2020г. |
Обобщение материалов исследований сетчатки глаза Сетчатка: Обобщение материалов исследований сетчатки глаза. 07-11-2020г. |
Проблемы академической науки Безынициативность в отсутствие личного интереса, план по валу статей, все большая коммерческая составляющая и многое другое: Проблемы академической науки. 11-10-2020г. |
Ориентировочный рефлекс Обобщение фактических данных исследований по функции и механизмам ориентировочного рефлекса – границы между рефлексами и сознанием: Ориентировочный рефлекс. 20-09-2020г. |
Колонки новой коры Обобщение фактических данных исследований по кортикальным колонкам новой коры: Колонки новой коры. 29-08-2020г. |
Ячеистая структура нейросети Обобщения серии экспериментов с разными типами схем соединений элементов нейросимулятора в виде ячеистых структур: Ячеистая структура нейросети. 02-08-2020г. |
Анонс предметной области: «Схемотехника адаптивных нейросетей» Эта программная статья анонсирует формирование среды коллективного исследования на сайте Форнит : Анонс предметной области: «Схемотехника адаптивных нейросетей». 19-07-2020г. |
Конструктор нейросхем Для тех, кто желает развить навыки схемотехнического мышления в игровом режиме и лучше понять работу природных нейросетей: Конструктор нейросхем. 04-07-2020г. |
Деменция Деменция как норма индивидуальной адаптивности: Деменция. 19-06-2020г. |
Книга «Что такое Я - схемотехнический подход» Содержание книги основывается на постулате, что природная нейросеть мозга является схемотехнической структурой - в точности, как это можно сказать про схемотехнику электронного прибора - при всей огромной разнице в способах реализации. Книга «Что такое Я - схемотехнический подход». 11-06-2020г. |
|