Расшифрована структура каталитического центра нитрогеназы — фермента, расщепляющего атмосферный азот
Автор: Александр Марков
Структура железо-молибденового кофактора, катализирующего фиксацию атмосферного азота. Серые шарики — атомы железа, желтые — серы, черные — углерода, большой коричневый шарик — атом молибдена. H и C — аминокислоты (гистидин и цистеин), к которым прикрепляется кофактор; 442 и 275 — позиции, в которых находятся эти аминокислоты в молекуле фермента нитрогеназы. Изображение из обсуждаемой статьи Spatzal et al. в Science
После многолетних усилий американским и германским ученым удалось расшифровать структуру «железо-молибденового кофактора», образующего каталитический центр фермента нитрогеназы и играющего ключевую роль в фиксации атмосферного азота. Открытие должно помочь в разработке новых эффективных технологий производства жизненно необходимых человечеству азотных удобрений.
Азотфиксация — важнейший биологический процесс, в ходе которого атмосферный азот (N2) превращается в пригодный для использования живыми организмами аммоний (NH4+). Далеко не все живые существа умеют осуществлять азотфиксацию. Лишь некоторые прокариоты, в том числе цианобактерии, справляются с этой технически очень непростой задачей. Всё живое на Земле до недавних пор существовало исключительно за счет азота, связанного азотфиксирующими микробами (см.: Азот в океане связывается там, где он теряется, «Элементы», 06.02.2007). Лишь недавно на планете появился еще один важный источник связанного азота — производимые человеком искусственные азотные удобрения.
Чтобы разорвать прочную тройную связь в молекуле N2, нужны либо высокие давление и температура, либо невероятно эффективный катализатор. По первому пути идет наша химическая промышленность, производящая аммиак из азота при помощи чрезвычайно энергоемкого «процесса Хабера». По имеющимся оценкам, сегодня около половины всего азота, входящего в состав человеческих тел, — это азот, зафиксированный при помощи процесса Хабера (и попавший сначала в азотные удобрения, синтезируемые из аммиака, а затем в культурные растения).
Азотфиксирующие прокариоты, чьими трудами фиксирована вторая половина азота в наших телах, естественно, избрали второй путь. Они расщепляют азот при помощи специальных ферментов — нитрогеназ, эффективно справляющихся с этой задачей при нормальной температуре и давлении. Неудивительно, что люди с давних пор хотели понять, как устроены нитрогеназы и как они работают.
Для этого оказалось недостаточно расшифровать аминокислотную последовательность нитрогеназы и реконструировать трехмерную структуру белка. Дело в том, что функцию каталитического центра в молекуле нитрогеназы выполняют не аминокислоты, а особый кофактор, состоящий из железа, серы и молибдена. У некоторых прокариот вместо атома молибдена в активном центре нитрогеназы находится атом ванадия или железа, но такие нитрогеназы менее эффективны и хуже изучены.
Железо-молибденовый кофактор (сокращенно FeMoco) — самый большой и сложный из известных на сегодняшний день биологических катализаторов на основе металлов. Этот шедевр биологических нанотехнологий изготавливается специальными ферментами (см. Nif gene) и прикрепляется к белковой основе нитрогеназы. Многие детали синтеза FeMoco до сих пор не выяснены. Именно этот кофактор играет ключевую роль в процессе азотфиксации: к нему присоединяется молекула азота, и здесь же происходит ее расщепление (см.: Эффективная азотфиксация появилась после становления кислородной атмосферы на планете, «Элементы», 25.05.2011). Поэтому для того, чтобы понять принцип работы нитрогеназы, необходимо в первую очередь расшифровать структуру железо-молибденового кофактора.
Это оказалось не так-то просто сделать. В 1992 году, когда была предпринята первая серьезная попытка проникнуть в эту тайну, разрешающая способность методов, имевшихся в распоряжении ученых, оказалась недостаточной, чтобы обнаружить атом, находящийся в самом центре FeMoco (см. левое изображение на рисунке). В 2002 году было показано, что центральный атом существует, но установить его природу еще долго не удавалось. Формулу кофактора с тех пор записывали так: [Mo:7Fe:9S:X], что означает «один атом молибдена, 7 атомов железа, 9 атомов серы и еще один атом неизвестно чего». Это мог быть кислород, углерод или азот, причем последний вариант казался наиболее вероятным (среднее изображение).
Прогресс в расшифровке структуры железо-молибденового кофактора. Красным цветом показаны атомы кислорода, синим — азота, желтым — серы, зеленым — молибдена, оранжевым — железа, голубым — углерода (кроме центрального атома углерода, который показан черным). Рисунок из обсуждаемой статьи S. Ramaswamy в Science
И вот сразу две команды ученых из Германии и США одновременно и независимо друг от друга показали, что в центре кофактора FeMoco на самом деле находится атом углерода (правое изображение). Первый коллектив — тот самый, который в 2002 году предположил, что это азот, — воспользовался для расшифровки структуры кофактора усовершенствованным методом пульсирующего электронного парамагнитного резонанса (см.: Pulsed electron paramagnetic resonance). Второй коллектив пришел к выводу о том, что в центре кофактора находится атом углерода, при помощи рентгеновской эмиссионной спектроскопии (см.: X-ray emission spectroscopy).
Таким образом, почти два десятилетия усилий увенчались успехом: структура одного из самых важных для поддержания жизни на нашей планете биологических катализаторов окончательно расшифрована. Это открытие имеет не только теоретическое, но и практическое значение. Зная структуру FeMoco, химикам будет легче разработать новые технологии промышленной фиксации атмосферного азота — более эффективные и менее энергоемкие, чем процесс Хабера.