Автор: Александр Марков
После многолетних усилий американским и германским ученым удалось расшифровать структуру «железо-молибденового кофактора», образующего каталитический центр фермента нитрогеназы и играющего ключевую роль в фиксации атмосферного азота. Открытие должно помочь в разработке новых эффективных технологий производства жизненно необходимых человечеству азотных удобрений. Чтобы разорвать прочную тройную связь в молекуле N2, нужны либо высокие давление и температура, либо невероятно эффективный катализатор. По первому пути идет наша химическая промышленность, производящая аммиак из азота при помощи чрезвычайно энергоемкого Азотфиксирующие прокариоты, чьими трудами фиксирована вторая половина азота в наших телах, естественно, избрали второй путь. Они расщепляют азот при помощи специальных ферментов — нитрогеназ, эффективно справляющихся с этой задачей при нормальной температуре и давлении. Неудивительно, что люди с давних пор хотели понять, как устроены нитрогеназы и как они работают. Для этого оказалось недостаточно расшифровать аминокислотную последовательность нитрогеназы и реконструировать трехмерную структуру белка. Дело в том, что функцию каталитического центра в молекуле нитрогеназы выполняют не аминокислоты, а особый кофактор, состоящий из железа, серы и молибдена. У некоторых прокариот вместо атома молибдена в активном центре нитрогеназы находится атом ванадия или железа, но такие нитрогеназы менее эффективны и хуже изучены. Железо-молибденовый кофактор (сокращенно FeMoco) — самый большой и сложный из известных на сегодняшний день биологических катализаторов на основе металлов. Этот шедевр биологических нанотехнологий изготавливается специальными ферментами (см. Это оказалось не так-то просто сделать. В 1992 году, когда была предпринята первая серьезная попытка проникнуть в эту тайну, разрешающая способность методов, имевшихся в распоряжении ученых, оказалась недостаточной, чтобы обнаружить атом, находящийся в самом центре FeMoco (см. левое изображение на рисунке). В 2002 году было показано, что центральный атом существует, но установить его природу еще долго не удавалось. Формулу кофактора с тех пор записывали так: [Mo:7Fe:9S:X], что означает «один атом молибдена, 7 атомов железа, 9 атомов серы и еще один атом неизвестно чего». Это мог быть кислород, углерод или азот, причем последний вариант казался наиболее вероятным (среднее изображение). И вот сразу две команды ученых из Германии и США одновременно и независимо друг от друга показали, что в центре кофактора FeMoco на самом деле находится атом углерода (правое изображение). Первый коллектив — тот самый, который в 2002 году предположил, что это азот, — воспользовался для расшифровки структуры кофактора усовершенствованным методом пульсирующего электронного парамагнитного резонанса (см.: Таким образом, почти два десятилетия усилий увенчались успехом: структура одного из самых важных для поддержания жизни на нашей планете биологических катализаторов окончательно расшифрована. Это открытие имеет не только теоретическое, но и практическое значение. Зная структуру FeMoco, химикам будет легче разработать новые технологии промышленной фиксации атмосферного азота — более эффективные и менее энергоемкие, чем процесс Хабера. Источники: См. также:
1) Thomas Spatzal, Müge Aksoyoglu, Limei Zhang, Susana L. A. Andrade, Erik Schleicher, Stefan Weber, Douglas C. Rees, Oliver Einsle.
2) Kyle M. Lancaster, Michael Roemelt, Patrick Ettenhuber, Yilin Hu, Markus W. Ribbe, Frank Neese, Uwe Bergmann, Serena DeBeer.
3) S. Ramaswamy.
1)
2)
Анонсы новостей ![]() |
Критические периоды развития у человека и вундеркинды Делаются определённые обобщения, коррелирующие с моделью представлений об организации механизмов психики МВАП: Критические периоды развития у человека и вундеркинды. 13-12-2020г. |
Обобщение материалов исследований сетчатки глаза Сетчатка: Обобщение материалов исследований сетчатки глаза. 07-11-2020г. |
Проблемы академической науки Безынициативность в отсутствие личного интереса, план по валу статей, все большая коммерческая составляющая и многое другое: Проблемы академической науки. 11-10-2020г. |
Ориентировочный рефлекс Обобщение фактических данных исследований по функции и механизмам ориентировочного рефлекса – границы между рефлексами и сознанием: Ориентировочный рефлекс. 20-09-2020г. |
Колонки новой коры Обобщение фактических данных исследований по кортикальным колонкам новой коры: Колонки новой коры. 29-08-2020г. |
Ячеистая структура нейросети Обобщения серии экспериментов с разными типами схем соединений элементов нейросимулятора в виде ячеистых структур: Ячеистая структура нейросети. 02-08-2020г. |
Анонс предметной области: «Схемотехника адаптивных нейросетей» Эта программная статья анонсирует формирование среды коллективного исследования на сайте Форнит : Анонс предметной области: «Схемотехника адаптивных нейросетей». 19-07-2020г. |
Конструктор нейросхем Для тех, кто желает развить навыки схемотехнического мышления в игровом режиме и лучше понять работу природных нейросетей: Конструктор нейросхем. 04-07-2020г. |
Деменция Деменция как норма индивидуальной адаптивности: Деменция. 19-06-2020г. |
Книга «Что такое Я - схемотехнический подход» Содержание книги основывается на постулате, что природная нейросеть мозга является схемотехнической структурой - в точности, как это можно сказать про схемотехнику электронного прибора - при всей огромной разнице в способах реализации. Книга «Что такое Я - схемотехнический подход». 11-06-2020г. |
|