Поиск по сайту
Изданы 4 книги сайта Форнит (бумажные и электронные версии).
Научно-популярная: «Познай себя» и специализированная: «Основы адаптологии».
Литературно-художественная интерпретация: двухтомник «Вне привычного».
Короткий адрес страницы: fornit.ru/1976
Содержание журнала Достижения науки, техники и культуры
Ссылка на первоисточник статьи: http://elementy.ru/news/430610.

Утрата полового размножения способствует появлению новых генов

Автор: Александр Марков
Половое размножение повышает эволюционную стабильность видов, и его утрата (переход к бесполому размножению) обычно ведет к быстрому вымиранию. Однако бделлоидные коловратки, утратившие половое размножение десятки миллионов лет назад, до сих пор остаются процветающей группой, насчитывающей около 400 видов. Как выяснилось, у бесполых организмов отсутствие генетического обмена между особями отчасти компенсируется тем, что разные варианты (аллели) одного и того же гена могут приобретать разные функции и фактически становиться разными генами, что повышает приспособляемость вида.
Коловратки (Rotifera) — разнообразная и вездесущая группа мельчайших многоклеточных животных, преимущественно пресноводных, но встречающихся также в море, влажной почве, вообще везде, где есть хоть немного влаги. Бделлоидные коловратки (тип Rotifera, класс Bdelloidea, от греч. bdella — «пиявка») названы так из-за особой манеры передвижения, напоминающей пиявок: они прикрепляются к субстрату передним концом, подтягивают задний конец (ногу), затем разгибаются, прикрепляются передним концом в новом месте и т. д.
Бделлоидные коловратки, возможно, являются самыми древними из бесполых многоклеточных животных. Другие коловратки, относящиеся к классу Monogononta, чередуют партеногенетическое размножение с половым: в благоприятных условиях самки производят на свет только самок, а при ухудшении условий в популяции появляются также и самцы. У бделлоидных коловраток половое размножение полностью утрачено, самцы никогда не наблюдались. Эта группа появилась как минимум 40, а может быть и 100 млн лет назад (первая датировка — по палеонтологическим данным, вторая — по «молекулярным часам»). По всей видимости, утрата полового размножения произошла еще в период становления группы.
Считается, что половое размножение резко повышает эволюционный потенциал живых организмов — их способность приспосабливаться к меняющимся условиям. Утрата полового размножения в разных эволюционных линиях, по-видимому, происходила многократно, но это обычно кончалось быстрым вымиранием. Бделлоидные коловратки в этом смысле — редкое исключение.
У организмов, размножающихся половым путем, каждый ген присутствует в двух копиях (одна от отца, другая от матери), причем эти копии могут немного различаться. В популяции может существовать множество вариантов (аллелей) каждого гена, которые из поколения в поколение комбинируются по-разному у разных особей (по две штуки у каждой особи), что способствует поддержанию генетического разнообразия популяции. При половом размножении потомки всегда отличаются от родителей, и практически каждый индивидуум обладает генетической уникальностью (то есть своей собственной неповторимой комбинацией аллелей). При половом размножении новые формы (фенотипы) могут возникать без мутаций, только за счет перекомбинирования уже имеющихся аллелей.
Напротив, при бесполом размножении потомство каждой самки генетически идентично ей самой (если только не произошла какая-нибудь мутация). Мутации становятся единственным источником генетической новизны, а это гораздо более рискованный путь, чем перекомбинирование аллелей, уже «проверенных» естественным отбором на совместимость с жизнью.
Теория, однако, предсказывает, что у бесполых видов, если они не вымерли сразу, может со временем начать проявляться одно эволюционное преимущество, способное хотя бы отчасти компенсировать недостатки бесполого размножения. Оно состоит в том, что две копии каждого гена у бесполых видов могут со временем приобрести разные функции, то есть фактически превратиться в два разных гена. Тем самым бесполые виды приобретают полезный источник новых генов, и, соответственно, новых адаптаций.
Для организмов, размножающихся половым путем, это невозможно по двум причинам. Во-первых, если два аллеля одного гена приобретут разные функции и обе эти функции важны для выживания, то жизнеспособными окажутся только гетерозиготы — особи, имеющие в своем геноме два разных аллеля этого гена. Гомозиготы (особи, имеющие два одинаковых аллеля) будут погибать. Гетерозиготы тоже будут иметь пониженную приспособленность, поскольку половину их потомства всегда будут составлять нежизнеспособные гомозиготы (а выживаемость потомства — ключевой показатель приспособленности). Во-вторых, при образовании половых клеток (гамет, несущих лишь одну копию каждого гена) происходит обмен участками между парными хромосомами (кроссинговер). В ходе этого процесса мутации, накопленные разными аллелями, перемешиваются, перекомбинируются, что не позволяет аллелям накопить много различий. Таким образом, при половом размножении аллельные варианты гена в принципе не могут эволюционировать независимо друг от друга.
Утрата полового размножения снимает эти запреты. Теперь каждая из двух копий гена может накапливать мутации независимо от другой, и если это приведет к разделению функций между аллелями, то тем лучше.
Эти догадки, однако, нуждались в экспериментальном подтверждении. Недавно было показано, что у бделлоидных коловраток нуклеотидные последовательности аллельных вариантов некоторых генов действительно отличаются друг от друга гораздо сильнее, чем это характерно для аллельных вариантов генов организмов, размножающихся половым путем. Оставалось доказать, что эти аллели (точнее, бывшие аллели — ведь у бесполых организмов понятие «аллель» теряет свой изначальный смысл) могут различаться не только по последовательности нуклеотидов, но и по функции.
Именно эту задачу и поставили перед собой генетики из Великобритании, Германии, Франции, Болгарии и Бельгии, выбравшие в качестве объекта исследования бделлоидную коловратку Adineta ricciae.
Ученые сосредоточили свое внимание на генах, определяющих способность бделлоидных коловраток переносить длительное высыхание (это одно из главных коловраточьих «ноу-хау», обеспечивших им всесветное распространение и процветание). Были проанализированы нуклеотидные последовательности ста генов, активизирующихся у коловратки при высыхании. Для дальнейшего анализа было выбрано два гена, очень похожих друг на друга и кодирующих белки, сходные с белками LEA (late embryogenesis abundant proteins). О белках LEA известно, что они участвуют в защите клеток от высыхания у растений, а также у некоторых животных и микроорганизмов.
Найденные у коловратки гены обозначили как Ar-lea-1A и Ar-Lea-1B. Ученые подвергли эти гены и кодируемые ими белки всестороннему изучению с применением разнообразных современных методик. В частности, использовались биоинформационные методы (компьютерный анализ нуклеотидных и аминокислотных последовательностей, сравнение с другими генами и белками, выявление активных центров и предсказание свойств белка на основе его структуры); вторичную и третичную структуру белков исследовали при помощи рентгеноструктурного анализа, а функциональные особенности изучались в различных биохимических тестах.
Оказалось, что два изученных гена действительно являются бывшими аллельными вариантами одного исходного гена. Это подтверждается тем, что они расположены на разных хромосомах, но в одинаковом генетическом окружении, а также их высоким сходством друг с другом. Аминокислотные последовательности кодируемых ими белков почти одинаковы — различаются только 12 аминокислот из 376, но этого оказалось достаточно, чтобы радикально изменить пространственную конфигурацию белковой молекулы и ее биохимические свойства. Выяснилось, что оба белка участвуют в защите клетки от высыхания, но делают это по-разному. Белок ArLEA1A не дает другим белковым молекулам при высыхании слипаться в комки. Белок ArLEA1B не обладает таким свойством: в его присутствии другие белки при высыхании агрегируют, то есть слипаются, точно так же, как и без него, или даже сильнее. Зато белок B, в отличие от белка A, при высыхании взаимодействует с фосфолипидными мембранами и предохраняет их от разрушения.
Этот пример является первым хорошо подтвержденным случаем расхождения функций аллельных вариантов гена у бесполого организма. Легко себе представить, почему такое не могло произойти у предков бделлоидных коловраток, пока они еще размножались половым путем. Ведь в этом случае переносить высыхание смогли бы только гетерозиготы (AB), тогда как у гомозигот (AA и BB) либо белки слипались бы, либо мембраны разрушались. Только отказ от полового размножения дает возможность закрепить гетерозиготное состояние навечно.
Авторы отмечают, что утрата полового размножения в определенном смысле аналогична удвоению всего генома. В обоих случаях то, что раньше было двумя копиями одного и того же гена, фактически превращается в два разных гена, которые отныне могут иметь разную эволюционную судьбу. Кстати, удвоение генома (полногеномная дупликация), по всей видимости, является очень важным эволюционным механизмом, лежащим в основе многих крупных эволюционных преобразований — таких, например, как появление позвоночных животных.
Источник: Natalia N. Pouchkina-Stantcheva, Brian M. McGee, Chiara Boschetti, Dimitri Tolleter, Sohini Chakrabortee, Antoaneta V. Popova, Filip Meersman, David Macherel, Dirk K. Hincha, Alan Tunnacliffe. Functional Divergence of Former Alleles in an Ancient Asexual Invertebrate // Science. 2007. V. 318. P. 268–271.
См. также:
В. П. Щербаков. Эволюция как сопротивление энтропии. II: Консервативная роль полового размножения // Журн. общей биологии. 2005. Т. 66. № 4. С. 300–309.





Обсуждение Еще не было обсуждений.


Оценить статью >> пока еще нет оценок, ваша может стать первой :)

   
Архив новостей
Анонсы новостей сайтов-участников    http://www.scorcher.ru/xml/news.rss - что это?
Достижения и недостатки при Путине
Обобщение доступных статистических материалов динамики параметров развития России с 2000 по 2017 годы:
Достижения и недостатки при Путине.
03-11-2017г.

Системное мышление и формализация
В статье показано, что такое системная модель и почему не системное исследование дает бессмысленные результаты:
Системное мышление и формализация.
24-09-2017г.

О демократии и либерализме
Надеюсь, что статья не будет красной тряпкой для верных Идее либералов и демократов, а послужит поводом для переосмысления многих интересных социальных проблем: О демократии и либерализме.
12-09-2017г.

Смерть и адаптивность
Более общим, чем естественный отбор, для личности является понятие своевременности и своеместности существования - хронотоп личности:
Смерть и адаптивность.
12-07-2017г.

Дети и политика
Что вырастит из ребенка: носитель чужих идей (робот), просто проживающее свою жизнь быдло или самобытный человек, сформировавший свое личное мнение по самым важным именно для себя вопросам: Дети и политика.
18-06-2017г.

Эвристика вероятности
Сегодня существуют методы, позволяющие даже в случае минимального жизненного опыта оценивать, насколько вероятно, что вам врут партнеры и близкие, насколько уверенно можно допускать зависимость между явлениями, в том числе, казалось бы, совершенно не связанными: Эвристика вероятности.


27-05-2017г.

Модели понимания и зависимость
В статье рассмотрена особенность субъективных моделей, негативная для адекватности понимания - зависимые состояния: Модели понимания и зависимость.
16-05-2017г.

Ненависть к несправделивости
Ненависть настолько сильное чувство и настолько имеет далеко идущие последствия, что стоит разобраться в этом психическом явлении: Ненависть к несправделивости.
19-04-2017г.

КПД политических революций
Насколько приемлемой для социума является политическая революция, суть которой многие апологеты ее необходимости для развития маскируют в самые различные формы:
КПД политических революций.
06-04-2017г.

Система произвольной адаптивности
Ясно и просто показываются принципы образования и взаимодействия функциональных элементов, присущих сознанию: Система произвольной адаптивности.
01-04-2017г.

Яндекс.Метрика
 посетителейзаходов
сегодня:11
вчера:11
Всего:310393