Поиск по сайту

Короткий адрес страницы: fornit.ru/245

Мои коммнтарии включены синим цветом Список основных тематических статей >>
Этот документ использован в разделе: "Волновая мистика П.Гаряева"Распечатать
Добавить в личную закладку.

Влияние модулированного биоструктурами электромагнитного излучения на течение аллоксанового сахарного диабета у крыс

Влияние модулированного биоструктурами электромагнитного излучения на течение аллоксанового сахарного диабета у крыс

ВЛИЯНИЕ МОДУЛИРОВАННОГО БИОСТРУКТУРАМИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НА ТЕЧЕНИЕ АЛЛОКСАНОВОГО САХАРНОГО ДИАБЕТА У КРЫС

П.П.Гаряев, А.А.Кокая*, И.В.Мухина*, Е.А.Леонова-Гаряева, Н.Г.Кокая*

 

Комментарии – в конце статьи.

Для возможности популяризации некоторое пояснение текста статьи.

Коротко говоря, автор давал крысам яд, вызывающий смерть (аллоксан, в использованных дозах приводящий к летальной недостаточности инсулина). В контрольной группе крыс просто облучали светом лазера, и они дохли как положено. В другой группе крыс облучали сквозь препарат, и в результате этого свет оказывал целебное действие – крыс не дохли. Т.е. получался лечебный свет, по теории автора несущий в себе некую "информацию", оказывающую восстановительное воздействие.

Как, в виде чего может свет нести подобную информацию, а ткани воспринимать ее – сакраментальная основа теории автора.

 

 

* Инкомнаука, Москва.

** Центральная научно-исследовательская лаборатория  Нижегородской государственной медицинской академии, Нижний Новгород.

 

Ключевые слова: аллоксановый  диабет, лазерное излучение, широкополосное электромагнитное излучение.

____________________________________________________________________________

  Целью настоящего исследования явилось изучение влияния  модулированного поджелудочной железой и селезенкой широкополосного   электромагнитного излучения, генерированного гелий-неоновым лазером, на течение  экспериментального сахарного диабета у крыс,  вызванного  внутрибрюшинным введением аллоксана. Продемонстрировано, что воздействие данного излучения на животных является  информационным, феноменологическим,   приводит к увеличению продолжительности жизни животных, нормализации уровня глюкозы в  крови, регенерации поджелудочной железы.

 

         Объектом нашего исследования явилось изучение влияния модулированного биоструктурами широкополостного  электромагнитного излучения (ШЭИ) на течение  экспериментального сахарного диабета у крыс линии Wistar. Диабет  моделировали  внутрибрюшинным введением аллоксана в дозе 200-300 мг/кг массы тела животного.

Для получения модулированного биоструктурами широкополосного электромагнитного излучения (ШЭИ) применяли ранее разработанную нами биотехнологию работы с использованием гелий-неонового лазера . Гелий-неоновый лазер мощностью  2 мВт и длиной волны  632.8 нм, имеет две совмещенные, ортогонально линейно поляризованные моды излучения, одночастотные в каждой из них. Лазерный луч проходит через биоструктуры, то есть через свежевыделенные препараты поджелудочной железы или селезенки новорожденной крысы той же линии Wistar.  Препарат наносили на предметное стекло и помещали на оптической оси лазерный луч-препарат. Юстировку предметного стекла с препаратом производили таким образом, чтобы обеспечить частичное обратное отражение луча в резонатор лазера. Такой многопроходный режим позволяет препарату выступать в роли оптического коррелятора [1] и влиять на распределение вторичных мод излучения лазера. Для регистрации сигнала корреляции использовали две пространственно разнесенные моды с перпендикулярной поляризацией. Оптические сигналы регистрируются и поступают на электронную схему, которая управляет режимом генерации лазера, при котором интенсивности мод наиболее скомпенсированы. В этом режиме работы лазер генерирует ШЭИ, зависящее от зондируемого биопрепарата.  Расстояние от препарата до активного элемента лазера 11см. Фотоны луча лазера на встречных пучках модулируются препаратом, в том числе по двум связанным  ортогонально поляризованным компонентам излучения. 

МЕТОДИКА ИССЛЕДОВАНИЯ

           В экспериментах использовали половозрелых самцов крыс линии Wistar в возрасте 5-6 месяцев, средней массой 180-220 грамм. Экспериментальный сахарный диабет вызывали путем внутрибрюшинного введения 1,0±0,2 мл раствора аллоксана (от 200 до 300 мг/кг веса животных) после 24 часового голодания на фоне нормальных показателей уровня глюкозы в крови животных. Животные были разделены на 3 группы по 10 животных в каждой: 1-я группа – контроль без воздействия ШЭИ, 2-я и 3-я группы – опыт,  подвергаются воздействию ШЭИ. В 1-ой и 2-ой группах аллоксан вводили в дозе 200 мг/кг,  в  3-й группе - 300 мг/кг. 2-ю группу животных располагали на расстоянии  70 см от лазера как источника ШЭИ,  3-ю - на расстоянии 20 м от источника ШЭИ в частично экранированном (подвальном)  помещении лаборатории.

            Контроль (10 крыс) на немодулированное ШЭИ. Использовали чистое предметное стекло без препарата поджелудочной железы, т.е. лазерный луч зондировал стекло без препарата. 

Облучение 2-ой группы крыс начинали на 3-е сутки с момента введения аллоксана. 3-ю группу начинали облучать в день  инъекции  аллоксана. Воздействие излучением проводили по 30 минут ежедневно, в течение 4-х дней по схеме: 10 минут воздействие ШЭИ, полученным в  результате прохождения лазерного луча через препарат с  тканью поджелудочной железы; 10 минут воздействие  ШЭИ, полученным в результате прохождения лазерного луча  через  препарат с тканью селезёнки; 10 минут воздействие ШЭИ, полученным в  результате прохождения лазерного луча через препарат с  тканью поджелудочной железы.

Во время эксперимента оценивали общее состояние животных, фиксировали  день  гибели животных  с  момента введения аллоксана во всех наблюдаемых группах. Животных в опытных группах наблюдали в течение 1,5 месяцев c момента введения аллоксана. У 5 крыс с максимальный подъем уровня глюкозы в крови после введения аллоксана  оценивали репродуктивную функцию (3 крысы из 2-ой группы и 2 крысы из 3-й группы).

Регистрацию  уровня глюкозы в крови осуществляли  глюкометром   Ascensia Entrust фирмы  Bayer. Диапазон измеряемого уровня глюкозы от 2,0 ммоль/л  до 30,6 ммоль/л. Значения уровня глюкозы в крови выше 30,6 ммоль/л  обозначались как  >30,6 ммоль/л (HI).

Изъятие тканей сердца, легких, печени, почек, селезенки и поджелудочной железы для макроскопического описания и гистологического исследования проводили: в контрольной группе на 3-ие сутки с момента введения аллоксана, что соответствовало дню максимальной гибели животных; во 2-й и 3-й группах через сутки после последнего дня воздействия ШЭИ,  что соответствовало 7-м суткам с момента введения аллоксана во 2-й группе и 4-м суткам в 3-й группе, а также на 42-е сутки эксперимента у выживших животных. Для гистологических исследований ткани фиксировали в 10% нейтральном формалине, обезвоживали в спиртах восходящей концентрации и заливали в парафин. Парафиновые срезы толщиной 5-7 мкм получали на микротоме Leica SM 2000R, окрашивали гематоксилином и эозином и анализировали с помощью микроскопа Leica DMLS. Видеоизображения получали на видеосистеме с помощью CCD-камеры.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Применение субтоксических доз аллоксана в контрольной группе способствует развитию  сахарного диабета, осложненного токсическим повреждением ряда жизненно важных органов и систем, что приводит к высокой летальности (70%) уже на 3 сутки (Рис.2). Гибнущих животных в терминальном состоянии подвергали эвтаназии, органы изымали для патоморфологического исследования.  В контрольной серии отсутствовало самопроизвольное снижение уровня глюкозы в крови за период наблюдения. В контроле на действие немодулированного ШЭИ все крысы погибли на 4-й день.

Применение  ШЭИ отчетливо влияет на течение  экспериментального аллоксанового диабета во 2-й группе (Рис. 1).  Отмечено, что у  80% животных после воздействия ШЭИ происходит достоверное   снижение  показателей уровня глюкозы в крови (Рис. 1, табл. 1). 20% животных умерли на  фоне выраженной гипергликемии на 6-7-е сутки после введения аллоксана, что отличается от  контрольной группы (Рис. 2). Через сутки после последнего  воздействия ШЭИ, т.е. на 7-е сутки эксперимента, провели эвтаназию 3-х животных, у которых изъяли ткани для патоморфологического исследования. Уровень глюкозы в крови у  крыс перед эвтаназией был в пределах физиологической нормы ( 5,56±0,12 ммоль/л ).

        Пять выживших  крыс наблюдали в течение 1,5 месяцев. У 3-х из них оценили репродуктивную функцию. Одна крыса не дала потомства и умерла на 40-е сутки после введения аллоксана, что весьма существенно отличается от контрольной группы (Рис.2). Две другие крысы дали полноценное потомство 14 и 11 крысят.  Через 1,5 месяца после введения аллоксана  у оставшихся в живых 4-х крыс были изъяты ткани для  патоморфологического исследования. Уровень глюкозы в крови у этих животных составил менее 10 ммоль/л.

Воздействие ШЭИ повлияло  на течение  экспериментального аллоксанового диабета в 3-й группе, где вводили аллоксан в дозе 300 мг/кг. В этой  группе  отмечен высокий уровень  летальности, однако её показатели  отличны от  2-ой и контрольной групп. (Рис.2). Несмотря на большую дозу введённого аллоксана для этой группы животных  характерно увеличение продолжительности  жизни по сравнению с контролем. Смертность в этой группе на 4-е сутки  с момента введения аллоксана составляла 50% по сравнению с контролем 100%. У двух крыс 3-ей  группы  в течение длительного периода наблюдения (1,5 месяца)  было отмечено колебание уровня глюкозы в крови от нормальных до максимальных значений (>30,6 ммоль/л).  Аналогичную картину наблюдали у одной  крысы во 2-й группе. Несмотря на явную гипергликемию в течение всего периода наблюдения, общее состояние этих животных расценивали как удовлетворительное, они  были активны и прожили  40 суток с момента введения аллоксана. Через сутки после последнего  воздействия ШЭИ, т.е. на 4-е сутки, провели эвтаназию 2-х животных и  изъяли ткани для патоморфологического исследования. За оставшимися животными (3 крысы) наблюдали 1,5 месяца. У 2-х из них  оценивали репродуктивную функцию, которая была снижена.

             При гистологическом исследовании  препаратов поджелудочной железы в указанных группах выявлен ряд особенностей (Рис.3). В отличие от интактных крыс (Рис.6 (а)) при гистологическом исследовании поджелудочной железы животных с аллоксановым диабетом (контрольная группа) выявлены выраженные дегенеративные изменения островков Лангерганса (Рис. 3(b)). Число и размер островков уменьшены, форма их неправильная. Количество β-клеток в островках резко снижено, в большинстве из них отмечалась вакуолизация цитоплазмы, уменьшение размеров ядер, конденсация хроматина, в некоторых клетках - кариопикноз. Выявлено наличие лимфоцитарного инфильтрата вокруг и внутри части островков. Гистологическая картина препаратов поджелудочной железы 2-ой группы на 7-е сутки с момента введения аллоксана  отличалась признаками функционального напряжения работы островка в отличие от препаратов контрольной группы.   Существенным отличием  являлось то, что ядра в основном были не повреждены (Рис. 3(с)).  Наличие большого количества мелких островков правильной формы, нормальной гистологической структуры вблизи кровеносных синусов и протоков,  спустя 1,5 месяца с момента введения аллоксана, возможно говорит об активации регенерационных процессов в поджелудочной железе (Рис. 3(d)).

Обсуждение результатов

Полученные результаты затрагивают фундаментальную проблему хранения и передачи управляющей генетической информации в ходе эмбрионального и постэмбрионального развития. В рамках данных экспериментов мы должны были убедиться  в принципиальной возможности стимулировать регенерацию поджелудочной железы у крыс in situ с помощью ШЭИ, модулированного (через фотоны) препаратом поджелудочной железы крыс той же линии.  Результаты  подтвердили наши ожидания. Встает вопрос, является ли такая регенерация следствием управления с помощью ШЭИ, содержащего искусственно привнесенную в него генетическую информацию? Допустим, следствием воздействия  на стволовые клетки крови или стволовые клетки остаточных структур разрушенной аллоксаном поджелудочной железы? Или: является ли регенерация результатом пускового (триггерного) воздействия ШЭИ такого рода?  Пока мы не можем дать однозначные ответы.  Есть некоторые предположения, основанные на  более ранних наших работах преимущественно теоретического характера. Вероятно, в данном акте регенерации работают принципы квантовой нелокальности (спутанности (entanglement)) морфогенетической информации, связанной с поляризационной (спиновой) модуляцией фотонов лазерного луча и с последующим преобразованием фотонов в ШЭИ [2-4].  В определенной мере это подтверждается недавними результатами по успешному «введению информации» (свойств) различных веществ непосредственно в головной мозг испытуемых людей с помощью спутанных спиновых состояний [5]. Для этого авторы использовали импульсное магнитное поле, фотовспышку, СВЧ-излучение и красный лазерный свет для того, чтобы создать «спутанные состояния» между спинами ядер атомов действующих веществ (морфий, хлороформ, дейтерохлороформ, диэтиловый эфир, никотин, кофеин и др.) и спинами ядер вещества головного мозга.

Литература

1. А.И. Мазур, В.Н. Грачев Электрохимические индикаторы. – М.: Радио и связь, 1985.

 

2. Gariaev P.P., Birshtein B.I., Iarochenko A.M., Marcer P.J., Tertishny G.G., Leonova K.A.,  Kaempf U., The DNA-wave biocomputer. “CASYS” – International Journal of Computing Anticipatory Systems (ed. D.M.Dubois), Liege, Belgium, v.10, pp.290-310 (2001);  http://www.rialian.com/rnboyd/dna-wave.doc

3. Gariaev P., Tertishniy G. The quantum nonlocality of genomes as a main factor of the morphogenesis of biosystems. // 3th Scientific and medical network continental members meeting. Potsdam, Germany, may 6-9, 1999. p.37-39.

 

4. И.В.Прангишвили, П.П.Гаряев, Г.Г.Тертышный, В.В.Максименко, А.В.Мологин, Е.А.Леонова, Э.Р.Мулдашев, 2000, Спектроскопия радиоволновых излучений локализованных фотонов: выход на квантово-нелокальные биоинформационные процессы. Датчики и Системы, №9 (18), с.2-13. http://www.self-managing.net/genetica/Zip/Teleport.zip

 

5. Huping Hu and Maoxin Wu. Nonlocal Effects of Chemical Substances on the Brain Produced through Quantum Entanglement. PROGRESS IN PHYSICS, V.3, pp. 20-26, July 2006.

 

 

Рис. 1. Динамика изменения уровня глюкозы в крови и течение аллоксанового диабета у крыс 2-й группы. Животным введен аллоксан в дозе 200 мг/кг и произведено воздействие ШЭИ  от   ткани поджелудочной железы и селезёнки новорожденного крысенка. Воздействие осуществлялось в течение 4-х дней с экспозицией 30 минут. Расстояние от источника излучения 70 см. Режим воздействия ШЭИ: 10 минут с использованием  ткани поджелудочной железы, 10 минут с использованием  ткани селезёнки и 10 минут с использованием ткани поджелудочной железы. Исходный день  соответствует дню введения аллоксана. Дни  воздействия ШЭИ -  3, 4, 5 и 6  сутки с момента введения аллоксана.

 

 

Рис. 2. Влияние ШЭИ на летальность  животных (%) при моделировании аллоксанового диабета 

 

Рис. 3. Структура ткани поджелудочной железы, островки Лангерганса: a -  интактные крысы,; b - контроль, после введения аллоксана в дозе 200 мг/кг; c – крысы 2-й группы на 7-е сутки с момента введения аллоксана в дозе 200 мг/кг и через сутки после воздействия ШЭИ;  d – во 2-й  группе через 1,5 месяца после введения аллоксана и воздействия ШЭИ.

Ув 1х400, окраска гематоксилином и эозином.

 

 

 

                    Рис. 1.

 

            Рис. 2.

 

 

 a

 

 

 

 

 

 

b

  c

  d

 

            Рис. 3.

 

 

Таблица 1.

Средние показатели уровня глюкозы в  крови у крыс 2-ой группы до и после  воздействия  ШЭИ, находившейся на расстоянии 70 см от источника излучения

 

Среднее значение

n=10

                    Уровень глюкозы в крови,  моль/л

1-й день,     исходный

3-е сутки,

начало воздействия ШЭИ

7-е сутки,

после воздействия ШЭИ

 M ± m

        5,70±0,30

* 25,21±1,03

 **6,75±0,6

 

*- р < 0.05 по сравнению  с исходным уровнем глюкозы в крови

**- р < 0.05 при  сравнении показателей уровня глюкозы в крови до воздействия и после него.

 

Гаряев  П. П.

Кокая А.А.

Мухина И.В.

Леонова-Гаряева Е.А.

Кокая Н.Г.

 

Гаряев Петр Петрович. 123056, Москва, р.т.  363 10 10 , доб 2400;  д.т.   253 21 70;

сот. 8 916 231 29 60

gariaev@mail.ru

 

Комментарии от Fornit

Текст статьи настолько запутан (трудно представить, что не намерено), что пришлось самому сделать некую выборку, распутывая все так, чтобы была ясная картина. Вот наглядно сгруппированные данные:

 

1-я группа  (контроль)

аллоксан вводили в дозе 200 мг/кг

Использовали чистое предметное стекло без препарата поджелудочной железы, т.е. лазерный луч зондировал стекло без препарата. С какого расстояния?? ведь у него тоже возможно влияние.

Изъятие тканей - на 3-ие сутки с момента введения аллоксана

 

2-я группа 

аллоксан вводили в дозе 200 мг/кг

расстояние от лазера  70 см

Облучение начинали на 3-е сутки с момента введения аллоксана

Изъятие тканей - 7-м сутки с момента введения аллоксана

 

3-я группа 

аллоксан вводили в дозе 300 мг/кг

расстояние от лазера  20 м в частично экранированном (подвальном)  помещении

Облучение начинали в день  инъекции  аллоксана

Изъятие тканей - 7-м сутки с момента введения аллоксана

 

Данные по резистентности к летальным дозам аллоксана, представленные в виде графика (Рис.2), достаточно наглядные.

Другие результаты не стал распутывать-расшифровывать (я не мазохист). Выводы.

 

Если первая группа облучалась с 70 см, то только ее можно действительно считать контрольной (3-я строго не контролируется из-за различия в дозировке аллоксана), изъятие же тканей в разное время вообще не сопоставимыми результаты на картинках со структурой тканей (здесь вообще не понятно: изъятие у только что умерших в данный срок или у любых).

 


Из всего запутаного (с намеренной небрежностью?) текста зависимость смертности от облучения – единственно впечатляющая. Хотя не понятно, третья группа дохнет быстрее из большей удаленности или большей дозировки аллоксана?? Поэтому просто не обращаем внимание на эту явно не вписывающуюся никуда 3-ю группу.


Самая впечатляющая нестыковка сейчас будет описана.
Облучение крыс 2-й группы начинали на 3-и сутки с момента введения аллоксана, крыс 3-й группы - в день инъекции аллоксана.
20% животных (2-ой группы) умерли на фоне выраженной гипергликемии на 6-7-е сутки после введения аллоксана, что отличается от контрольной группы.
20% животных (контрольной группы) умерли на фоне выраженной гипергликемии на 2-е сутки после введения аллоксана, что отличается от контрольной группы.
Результат проиллюстрирован диаграммой:

видно, что 70%умерли на 3-и сутки т.е. тогда, когда вторую группу только начали облучать.
Но ведь до 3-го дня контрольная группа НИЧЕМ не отличалась от 2-ой группы потому, что " Обучение крыс 2-й группы начинали на 3-и сутки с момента введения аллоксана ". И на диаграмме вплоть до 3-х суток смертность 2-1 группы должна была быть такой же как контрольной. Но ее нет. Вот и все.


Можно было вообще не путаться во всем этом, а просто утверждать, что при получении летальных доз облученные через препараты крысы фактически перестают умирать (только почему-то сдыхают на 10-40-е сутки). И это настолько чудесный результат, что все биологи просто обязаны бы кинуться проверять и изучать это явление.

Но никто не может повторить исследование просто потому, что в методике отсутствует самое главное: не описано как именно реализуется "Оптические сигналы регистрируются и поступают на электронную схему, которая управляет режимом генерации лазера, при котором интенсивности мод наиболее скомпенсированы.". Т.е. не ясно что конкретно нужно проделывать с излучением для получения заявленного эффекта. Не говоря уже о таинственно-недоговоренном: " Юстировку предметного стекла с препаратом производили таким образом, чтобы обеспечить частичное обратное отражение луча в резонатор лазера." Насколько "частично обратное"? Ну и т.п.

Мое личное впечатление: статья на редкость небрежна как в плане методологии, так и вообще в плане представления информации. 99% интуитивно ощущаемой вероятности некорректности проведения опытов и проведения статистики (возможно, отбраковывались "нехорошие" данные и т.п.). Коробит неграмотное представление о возможности модуляции самих фотонов. Они могут переизлучаться, уже другими, но никогда никакой фотон не может никак измениться, оставаясь в своей фотонной стезе (на само поле ничто не воздействует, только оно может воздействовать на вещество или образовывать вещество). Это более дико звучит, чем если сказать о том, что в транзисторе модулируются отдельные электроны, а не их поток.

Больше всего текст статьи напоминает описание волшебной палочки Г. Грабового, которую он запатентовал в РОСПАТЕНТ: http://www.scorcher.ru/art/mist/grabovoy/grabovoy8.php а стиль описания - Грабового же теорию: http://www.scorcher.ru/art/mist/grabovoy/grabovoy9.php написанной в той же запутанной форме, вовсе не рассчитанной на то, что это будет возможно распутать и постичь.

Предположим, что П.П.Гаряев просто не научился ясно выражать мысли и ненамеренно все запутывает по каким-то причинам (плохому танцору все мешает, как известно).

Но он – гений, которого все еще не могут понять неблагодарные коллеги и открыл Явление, и даже привел Опыт, его наглядно доказывающий. (не буду спрашивать, а почему такой какой-то неказистый и не эффектный, ведь уже давно он на расстоянии воздействует на организмы, суля недругам порчу, а себе омоложение). Но, учитывая столь революционно ниспровергающий нафиг результат, просто необходимо, в соответствии с научной методологией, отнестись к нему с максимальным недоверием и с максимальной тщательностью. А это предполагает воспроизведение результатов другими заинтересованными исследователя не связанных друг с другом групп. Вот после всестороннего подтверждения и можно бить в фанфары и свысока посмотреть на всяких жалких мосек, смеющих гавкать на великого.

 

Кроме этого, было прислано следующее замечание по поводу фразы: "В экспериментах использовали половозрелых самцов крыс линии Wistar в возрасте 5-6 месяцев, средней массой 180-220 грамм."
Что это за дистрофики в возрасте 6 месяцев вес такой? а авторы вообще-то крыс взвешивали и знают какой нормальный вес соответствует возрасту?
В самом деле да, этому возрасту обычно соответствует вес порядка 250-300г, а верхняя граница у Гаряева - куда ниже нижней в норме. Что-то тут очень не правильно.



Последнее редактирование: 2014-12-18

Оценить статью можно после того, как в обсуждении будет хотя бы одно сообщение.
Об авторе: Статьи на сайте Форнит активно защищаются от безусловной веры в их истинность, и авторитетность автора не должна оказывать влияния на понимание сути. Если читатель затрудняется сам с определением корректности приводимых доводов, то у него есть возможность задать вопросы в обсуждении или в теме на форуме. Про авторство статей >>.

Тест: А не зомбируют ли меня?     Тест: Определение веса ненаучности

В предметном указателе: Влияние особенностей семейного воспитания на социальную адаптированность детей | ВЛИЯНИЕ ПОВРЕЖДЕНИЕ ПРЕФРОНТАЛЬНОЙ КОРЫ НА ПОВЕДЕНИЕ СОБАК В УСЛОВИЯХ КОНФЛИКТА МЕЖДУ ВЕРОЯТНОСТЬЮ И ЦЕННОСТЬЮ ПОДКРЕПЛЕНИЯ | Деление электромагнитного поля на электрическое и магнитное | Излучение Хокинга | Иногда стечение обстоятельств можно объяснить только мистикой? | Мистическое влияние в современном обществе | Шизофрения. Параноидная форма. Непрерывный тип течения. | Познай самого себя: Влияние социального окружения | К вопросу о влиянии северного сияния на онанизм в Средней Азии
Последняя из новостей: О том, как конкретно возможно определять наличие психический явлений у организмов: Скромное очарование этологических теорий разумности.
Все новости

Может ли нейробиолог понять микропроцессор?
Нейробиологи, вооружившись методами, обычно применяемыми для изучения живых нейроструктур, попытались использовать их чтобы понять, как функционирует простейшая микропроцессорная система — «Мозгом» был процессор MOS 6502.
Все статьи журнала
 посетителейзаходов
сегодня:34
вчера:67
Всего:80389266

Авторские права сайта Fornit
Яндекс.Метрика