Книги сайта: «Мировоззрение», «Познай себя», «Основы адаптологии»,
«Вне привычного», Лекторий МВАП и «Что такое Я».
 
Короткий адрес страницы: fornit.ru/1891
Содержание журнала Достижения науки, техники и культуры
Ссылка на первоисточник статьи: http://www.membrana.ru/articles/inventions/2010/07/05/180100.html.

Хранение энергии, уступающее лишь ядерным реакциям

Удивительно, как много нового может рассказать о себе вещество, если на него хорошенько надавить. На снимке: исследуемый образец под микроскопом, оранжевые полоски – электроды, необходимые для измерения проводимости (фото Minseob Kim et al./Nature Chemistry).

В области топлива все рекордсмены, кажется, известны наперёд, ведь их "полезное содержание" зависит от давно изученных химических связей. Однако если заглянуть внутрь планет, там могут найтись материалы с необычными параметрами. И хорошо, что для такого поиска не обязательно спускаться в "преисподнюю" – достаточно и возможностей лаборатории.

 

Специалисты из университета Вашингтона (WSU) использовали сверхвысокое давление, аналогичное существующему в недрах Земли или бездне планет-гигантов, и создали невиданный прежде материал. По удельной ёмкости это – самое высокоплотное энергетическое хранилище химического типа.

 

Ведущий автор исследования профессор Чхонк-Шик Ёо (Choong-Shik Yoo) говорит о новом материале так: "Это наиболее сжатая форма хранения энергии, за исключением ядерной". Нетрудно догадаться, какие перспективы сулит освоение такой "упаковки" на практике.

 

 

 


Профессор Чхонк-Шик Ёо и его студенты осматривают исследовательскую установку (фото Washington State University).

 

Как поясняет пресс-релиз WSU, химики поместили внутрь ячейки высокого давления (5 х 8 сантиметров) с алмазными наковальнями порцию дифторида ксенона (XeF2). Это вещество используется для травления кремния в микроэлектромеханических системах, а также его задействуют при синтезе сверхпроводников.

 

 

 


Молекула дифторида ксенона и кристаллическая решётка этого вещества в обычном состоянии (иллюстрации wikipedia.org).

 

В обычных условиях дифторид ксенона — твёрдый белый кристалл, диэлектрик, а его линейные молекулы находятся на сравнительно большом расстоянии друг от друга. Однако под высоким давлением картина радикально меняется: материал меняет структуру с молекулярной на атомарную, а кристаллическая решётка перестраивается, обеспечивая появление в образце металлических свойств.

 

При 50 гигапаскалях (500 тысяч атмосфер) XeF2 превращается в красноватый полупроводник, содержащий XeF4 (тут имеется в виду элементарная ячейка кристалла) с двумерной слоистой графитоподобной решёткой.

 

При сжатии выше 70 ГПа часть образца трансформируется в чёрный состав с металлическими свойствами — XeF8 (его, к слову, учёные наблюдали впервые). Решётка этого материала составлена уже из сложных многогранников, формирующих "тугие" трёхмерные связи. (Детали раскрывает статья в Nature Chemistry.)

 

 

 


Кристаллические решётки различных фаз фторида ксенона при 52 ГПа (a и b – виды с разных сторон), а также при 98 ГПа (c). Синие шарики – ксенон, оранжевые – фтор (иллюстрация Minseob Kim et al./Nature Chemistry).

 

Авторы работы изучили свойства необычного варианта фторида ксенона при давлении до миллиона атмосфер с лишним, поразившись его новым свойствам.

 

Химики установили, что перераспределение электронов в оболочках атомов, вызванное колоссальным давлением и сближением молекул исходного вещества, а также частичная делокализация электронов (которые тем самым смягчают силы отталкивания, действующие между атомными ядрами) обеспечивают выстраивание в таком кристалле новых химических связей.

 

 

 


Прозрачная фаза фторида ксенона при 3 ГПа (a), жёлтая при 47 ГПа (b), красная при 53 ГПа (c) и чёрная при 74 ГПа (d). Съёмка в проходящем свете. Масштабные линейки: а) 100 мкм, остальные – 50 мкм.

Справа: синие точки на графике демонстрируют два резких падения электрического сопротивления образца фторида ксенона по мере повышения давления, что соответствует переходу его в класс полупроводников и проводников соответственно (иллюстрации Minseob Kim et al./Nature Chemistry).

 

Особенно учёных заинтересовало то, что связи эти оказались очень сильными. Фактически в ходе опыта происходило преобразование энергии механического давления в химическую с ультравысокой плотностью.

 

Учёные полагают, что дальнейшее развитие этих опытов может привести к появлению нового класса энергетических материалов и топлива, необычных устройств для хранения энергии, суперокислителей для уничтожения химических и биологических агентов, к созданию новых высокотемпературных сверхпроводников.

 

 

 


Фторид ксенона (так называемая фаза I) при 2 ГПа, рисунок (a), его полупроводниковая фаза IV при 52 ГПа (b) и металлическая фаза V при 98 ГПа (c). d,e, f – соответствующие им карты электронной плотности, красный цвет – повышенная, синий – пониженная (иллюстрация Minseob Kim et al./Nature Chemistry).

 

Правда, от первых опытов по получению необычного материала до реальных устройств, которые могли бы его использовать (вроде топливных элементов или батарей), — дистанция огромного размера. Нынешняя работа пока представляет больше академический интерес.

 

И всё же надо вспомнить, что все великие изобретения человечества начинались с простых экспериментов. Предвидел ли, к примеру, Луиджи Гальвани, как изменит мир электричество, когда размышлял над препарированной лягушкой, у которой дёргалась лапка при соприкосновении с металлическим скальпелем?


Обсуждение Еще не было обсуждений.




Оценить статью >> пока еще нет оценок, ваша может стать первой :)

   
Архив новостей
Анонсы новостей    http://www.scorcher.ru/xml/news.rss - что это?
Ориентировочный рефлекс
Обобщение фактических данных исследований по функции и механизмам ориентировочного рефлекса – границы между рефлексами и сознанием: Ориентировочный рефлекс.
20-09-2020г.

Колонки новой коры
Обобщение фактических данных исследований по кортикальным колонкам новой коры: Колонки новой коры.
29-08-2020г.

Ячеистая структура нейросети
Обобщения серии экспериментов с разными типами схем соединений элементов нейросимулятора в виде ячеистых структур: Ячеистая структура нейросети.
02-08-2020г.

Анонс предметной области: «Схемотехника адаптивных нейросетей»
Эта программная статья анонсирует формирование среды коллективного исследования на сайте Форнит : Анонс предметной области: «Схемотехника адаптивных нейросетей».
19-07-2020г.

Конструктор нейросхем
Для тех, кто желает развить навыки схемотехнического мышления в игровом режиме и лучше понять работу природных нейросетей: Конструктор нейросхем.
04-07-2020г.

Деменция
Деменция как норма индивидуальной адаптивности: Деменция.
19-06-2020г.

Книга «Что такое Я - схемотехнический подход»
Содержание книги основывается на постулате, что природная нейросеть мозга является схемотехнической структурой - в точности, как это можно сказать про схемотехнику электронного прибора - при всей огромной разнице в способах реализации. Книга «Что такое Я - схемотехнический подход».
11-06-2020г.

Редактор Карты Знаний
Авторы создают Карты Знаний, а пользователи их проходят, постепенно вникая в то, что является хорошо понятым автором.: Редактор Карты Знаний.
14-02-2020г.

Что такое «Я»
Популярное обобщение современных фактических данных исследований психофизиологии: Что такое «Я».
23-01-2020г.

Моделирование нейронных сетей мозга
Послойное моделирование нейронных сетей с индивидуальными периодами развития: Моделирование нейронных сетей мозга.
22-12-2019г.

Яндекс.Метрика
 посетителейзаходов
сегодня:22
вчера:45
Всего:24052519