Code Example for the Activity Functions of Basic Contexts in Simple (Non-Social) Insects
This model is a comprehensive guide for a programmer.
The implementation of this system will allow for the creation of a digital insect that demonstrates surprisingly complex and realistic behavior, emerging from the interaction of simple, deterministic rules. This is a great example of the principle "simplicity giving birth to complexity."

Arrays defined before birth:
// The array of life parameters (vitals) contains ID and importance weight in conditional percentages
VitalsArr={
Id=1, importance=90 // Hypoxia / Oxygen deficiency
Id=2, importance=80 // Dehydration / Water deficiency
Id=3, importance=70 // Overheating
Id=4, importance=60 // Hypothermia
Id=5, importance=60 // Hunger (energy deficiency)
Id=6, importance=30 // Stress (consolidation of the body's defense systems)
Id=7, importance=20 // Mating drive (sexual activity)
Id=8, importance=50 // Self-preservation
Id=9, importance=100 // Injuries
}

// Basic behavior styles (basic reflex contexts)
BasicContexts={
id=1, importance=90 # Ventilation / Cleaning of spiracles
Reaction to Id=1 (Suffocation). Active tracheal ventilation,
cleaning spiracles with limbs, exiting an area with a poor gas environment
id=2, importance=80 # Water Absorption
Reaction to Id=2 (Dehydration). Search for and consumption of water:
drinking droplets, absorbing moisture through the integument, consuming sap
id=3, importance=70 # Thermoregulation: Cooling
Reaction to Id=3 (Overheating). Seeking shade, burrowing into substrate,
nocturnal activity, evaporative cooling (for some species)
id=4, importance=70 # Thermoregulation: Heating
Reaction to Id=4 (Hypothermia). Sunbathing,
muscular thermogenesis (wing vibration), selecting sun-warmed areas
id=5, importance=60 # Food Procurement
Reaction to Id=5 (Hunger). Foraging, feeding:
consuming nectar, chitinous objects, plant sap
id=6, importance=30 # Freezing (Thanatosis)
Reaction to Id=6 (Stress). Complete immobility in response to a short-term
threat - reaction to shadow, substrate vibration
id=7, importance=20 # Reproductive Behavior
Reaction to Id=7 (Mating drive). Searching for a mate, courtship displays,
mating, egg-laying
id=8, importance=50 # Threat Avoidance
Reaction to Id=8 (Self-preservation). Active escape, retreat to shelter,
adopting defensive postures
id=9, importance=100 # Immobilization and Grooming of Wounds
Reaction to Id=9 (Injuries). Minimizing movement to
reduce hemolymph loss, cleaning the wound with mouthparts
id=10, importance=30 # Activity/Rest Cycle (Circadian Rhythm), Diurnal/Nocturnal activity.
This style is activated not by the state of vitals, but by external cycles (day/night change) and acts as a global modulator, forcibly switching the system to an energy-saving mode, where all non-critical activities are suppressed. Analogous to the Sleep style in the base code example.
}
// With each change in the state of VitalsArr, the following is calculated:
DeviationFromNorm=[7] // deviation of the parameter from the norm, as a percentage of 100
This replaces the previously used fixed deviation ranges.
// For example, if parameter 1 deviated from the norm by 30%, then DeviationFromNorm[1]==-30 -- a negative value indicating deviation from the norm
// And if parameter 1 improved towards the norm by 10%, then DeviationFromNorm[1]==10 -- not necessarily for insects
// Active basic contexts are calculated -- the most ancient mechanism for restoring the parameter norm, by activating corresponding contexts where the behavior will aim to restore this parameter or provide an adaptive reaction.
The activation logic does not require consideration of priorities or conflicts, as all this is already accounted for in the array of possible BasicContexts combinations. Antagonist arrays are not needed.
Only in the case of circadian Rest (BasicContextsActived[10]=true) is the context activated by the need for sleep to quell excess activity and optimize memory.
// The array of active basic contexts has values of true or false:
BasicContextsActived[10]// all false
func getActiveBasicContexts(){
// Reset all contexts, EXCEPT special ones (sleep, circadian rest)
for i = 1 to 10 {
if i == 10 // Do not reset Circadian Rhythm
break
BasicContextsActived[i] = false
}
// Injuries (Id=9)
if DeviationFromNorm[9] < -50 {
BasicContextsActived[9] = true // Immobilization and grooming of wounds
return // everything else is irrelevant
}
// Hypoxia (Id=1)
if DeviationFromNorm[1] < -20 {
BasicContextsActived[1] = true // Ventilation
return // everything else is irrelevant during hypoxia
}
// Dehydration (Id=2)
if DeviationFromNorm[2] < -30 {
BasicContextsActived[2] = true // Water Absorption
return // everything else is irrelevant
}
// Overheating (Id=3)
if DeviationFromNorm[3] < -40 {
BasicContextsActived[3] = true // Cooling
return // everything else is irrelevant
}
// Hypothermia (Id=4)
if DeviationFromNorm[4] < -50 {
BasicContextsActived[4] = true // Heating
return // everything else is irrelevant
}
// Insects at rest do NOT lose their reaction to lack of oxygen, but their alert functions (reaction to stress, threat) can be significantly reduced. Principle: in a state of rest, all purposeful active behaviors requiring movement and significant energy expenditure are suppressed, but automatic defensive reactions to immediate life threats are preserved.
if BasicContextsActived[10] { // Rest is active --- activated externally
// SUPPRESSION OF ENERGY-INTENSIVE ACTIVITIES
return // everything else is irrelevant
}
// Hunger (Id=5)
if DeviationFromNorm[5] < -60 {
BasicContextsActived[5] = true // Food Procurement
return // everything else is irrelevant
}
// Stress (Id=6)
if DeviationFromNorm[6] < -50 {
BasicContextsActived[6] = true // Freezing
BasicContextsActived[8] = false // Incompatible with avoidance
return // everything else is irrelevant
}
// Mating drive (Id=7)
if DeviationFromNorm[7] < -70 {
BasicContextsActived[7] = true // Reproductive Behavior
return // everything else is irrelevant
}
// Self-preservation (Id=8)
if DeviationFromNorm[8] < -50 {
BasicContextsActived[8] = true // Threat Avoidance
return // everything else is irrelevant
}
}
getActiveBasicContexts()
Example Algorithm for Implementing Reactions as a Hierarchy of Behavioral Programs
ACTIVE BASIC CONTEXT (Motivation)
│
├── KEY STIMULUS 1 (Innate)
│ └── REACTION 1 (Search-orienting)
│ └── REACTION 2 (Final compensatory)
│ └── VITAL PARAMETER RETURNS TO NORM
│
├── KEY STIMULUS 2 (Innate)
│ └── REACTION 1
│ └── REACTION 2
│ └── VITAL PARAMETER RETURNS TO NORM
│
└── ABSENCE OF STIMULI
└── ACTIVE SEARCH (Random wandering)
└── STIMULUS DETECTION
└── [transition to the corresponding chain]

Detailed Breakdown by Basic Contexts:
1. FOOD PROCUREMENT (Vital: Hunger | Id=5)
text
BASIC CONTEXT: Food Procurement
│
├── STIMULUS: Smell of nectar/sap
│ └── REACTION: Flight/movement upwind
│ └── STIMULUS: Visual contact with flower/plant
│ └── REACTION: Landing and consuming food
│ └── RESULT: ↓ Hunger
│
├── STIMULUS: Movement of small prey
│ └── REACTION: Pursuit/attack
│ └── STIMULUS: Tactile contact with prey
│ └── REACTION: Eating
│ └── RESULT: ↓ Hunger
│
└── STIMULUS: Absence (active search)
└── REACTION: Systematic exploration of the territory
└── STIMULUS DETECTED → transition to the corresponding branch
2. WATER ABSORPTION (Vital: Dehydration | Id=2)
text
BASIC CONTEXT: Water Absorption
│
├── STIMULUS: Glint/reflection of water
│ └── REACTION: Movement towards the source
│ └── STIMULUS: Tactile sensation of moisture
│ └── REACTION: Drinking/absorption
│ └── RESULT: ↓ Dehydration
│
├── STIMULUS: High air humidity
│ └── REACTION: Migration to the high humidity zone
│ └── REACTION: Passive moisture absorption
│ └── RESULT: ↓ Dehydration
│
└── STIMULUS: Succulent plants/fruits
└── REACTION: Absorption of sap
└── RESULT: ↓ Dehydration
3. THERMOREGULATION: COOLING (Vital: Overheating | Id=3)
text
BASIC CONTEXT: Cooling
│
├── STIMULUS: Temperature gradient (from hot to cold)
│ └── REACTION: Movement along the gradient
│ └── STIMULUS: Cool substrate
│ └── REACTION: Immobility/burrowing
│ └── RESULT: ↓ Overheating
│
├── STIMULUS: Shade
│ └── REACTION: Retreat to shade
│ └── REACTION: Immobility
│ └── RESULT: ↓ Overheating
│
└── STIMULUS: Night time
└── REACTION: Nocturnal activity
└── RESULT: ↓ Overheating
4. THERMOREGULATION: HEATING (Vital: Hypothermia | Id=4)
text
BASIC CONTEXT: Heating
│
├── STIMULUS: Sunlight
│ └── REACTION: Sunbathing
│ └── REACTION: Orienting body perpendicular to rays
│ └── RESULT: ↓ Hypothermia
│
├── STIMULUS: Warm substrate
│ └── REACTION: Immobility on the substrate
│ └── RESULT: ↓ Hypothermia
│
└── STIMULUS: Low temperature
└── REACTION: Muscle tremors/vibration
└── RESULT: ↓ Hypothermia
5. VENTILATION (Vital: Hypoxia | Id=1)
text
BASIC CONTEXT: Ventilation
│
├── STIMULUS: High CO2 / Low O2
│ └── REACTION: Accelerated tracheal ventilation
│ └── REACTION: Movement against the gas gradient
│ └── RESULT: ↓ Hypoxia
│
├── STIMULUS: Blocked spiracles
│ └── REACTION: Cleaning spiracles with limbs
│ └── RESULT: ↓ Hypoxia
│
└── STIMULUS: Aquatic environment (for larvae)
└── REACTION: Rising to the surface
└── RESULT: ↓ Hypoxia
6. IMMOBILIZATION DUE TO INJURIES (Vital: Injuries | Id=9)
text
BASIC CONTEXT: Immobilization
│
├── STIMULUS: Pain/loss of hemolymph
│ └── REACTION: Immediate immobility
│ └── REACTION: Grooming the wound
│ └── RESULT: ↓ Hemolymph loss
│
├── STIMULUS: Open wound
│ └── REACTION: Retreat to shelter
│ └── REACTION: Minimizing movements
│ └── RESULT: ↓ Risk of infection
│
└── STIMULUS: Absence of threat
└── REACTION: Passive recovery
└── RESULT: ↓ Injuries
System Operating Principles:
1. Cascade Activation - each stage of the chain is activated upon successful completion of the previous one.
2. Hardwired Linkage - stimuli and reactions are hereditarily determined.
3. Fallback Mechanism - in the absence of stimuli, search behavior is activated.
4. Feedback - successful completion of the chain normalizes the vital and deactivates the context.
This scheme ensures goal-directed behavior without complex cognitive processes, using only innate reactions to key stimuli.
General Execution Architecture
while true:
updateDeviationFromNorm()
getActiveBasicContexts() // using your function with priorities
foreach context_id in 1..9:
if BasicContextsActived[context_id]:
executeBehaviorProgram(context_id, sensory_input)
Each executeBehaviorProgram() implements a finite state machine with the stages described above.

BEHAVIOR CHAIN EXECUTION (using Food Procurement as an example)
func executeBehaviorChain(context int, stimuli []string) bool {
switch context {
case 5: // Food Procurement
// Step 1: Select reaction based on stimuli and reflexes
reaction := selectReaction(context, stimuli)
// Step 2: Execute multi-step chain
for reaction != "complete" && !isInterrupted() {
switch reaction {
case "active_search":
// Random wandering, update stimuli
if performActiveSearch() {
stimuli = getSensoryInput() // Check if we found food
}
case "move_toward_smell":
if performMovement("against_wind") {
// Reached the smell source?
if checkForVisualContact("flower") {
reaction = "consume_food"
}
}
case "consume_food":
if performConsumption() {
Vitals[4] += 25 // Replenishing energy
reaction = "complete"
}
}
// If stuck in a loop - return to search
if !isReactionProgressing() {
reaction = "active_search"
}
}
return true
}
// ... similarly for other contexts
return false
}

Structure of a Conditioned Reflex, according to the model described at fornit.ru/64936 and fornit.ru/art7:
For the formation of conditioned reflexes, the following is necessary:
1. Coincidence in time (combination) of any indifferent stimulus (conditional)
with a stimulus that causes a corresponding unconditioned reflex (unconditioned stimulus).
2. It is necessary that the action of the conditioned stimulus somewhat precedes the action of the unconditioned one.
3. The conditioned stimulus should not cause a significant independent reaction.
4. The reflex arises only after several repetitions of the combinations 2 (news_detectior.go: if tempImg.motAutmtzmID > 2 - in Each run produces rank int)),
this prevents random connections.
And the resulting reflex image fades if the combinations are not confirmed for a long time, definitely overnight.
Conditions for the extinction of a conditioned reflex:
1. Long absence of the triggering stimulus (the node of the branch from which it is launched) -- this is easily implemented by adding lastActivation int to the structure of the conditioned reflex -- in the number of pulses and the expiration time of outdated reflexes;
2. The action of competing stimuli -- i.e., suppression by competing reflexes and automatisms -- i.e., if there is a more significant reflex or any automatism for the same triggering stimulus, it blocks the conditioned reflex. The structure of the conditioned reflex has its rank (number in the parent chain), the higher it is, the more prioritized the reflex is among others. An automatism has higher priority than any reflex.
3. In the absence of "reinforcement" after the performed action. But unconditioned reflexes do not fade because of this, they are unconditional also in relation to what happens after the action and their "reinforcement" -- is determined by hereditary evolution: unconditioned reflexes are constant, given from birth and do not fade throughout life. Conditioned reflexes have exactly the same functional task, only with new stimuli, meaning they also do not need subsequent reinforcement. In literature, the absence of reinforcement is often confused with maladaptation, as well as conditioned reflexes and automatisms formed during conscious activity.
4. Different conditioned reflexes without reinforcement fade at different speeds. More "young" and unstable conditioned reflexes fade faster than "older", stable conditioned reflex connections (func conditionRexlexFound).
A conditioned reflex can be formed based on an unconditioned reflex
or based on an existing unconditioned reflex,
using the actions of the original reflex for new conditions.
Such chains of reflexes are unlimited.
type ConditionReflex struct {
ID int
lev1 int
lev2 []int
// ID of the triggering stimulus image of type TriggerStimulsID, unlike the unconditioned reflex, only one trigger
lev3 int
ActionIDarr []int
// reflex rank (number in the parent chain), the higher it is, the more prioritized the reflex is among other conditioned ones
rank int
/* time of last activation in DAYS of LifeTime
- for disabling the reflex if not used for 50 days of life,
but each use strengthens the reflex for 10 days of life:
conditionRexlexFound().
*/
lastActivation int
// birth time in DAYS of LifeTime, because more "young" and unstable conditioned reflexes fade faster than "older" ones.
birthTime int
}

