Поиск по сайту
Проект публикации книги «Познай самого себя»
Узнать, насколько это интересно. Принять участие.
Короткий адрес страницы: fornit.ru/2719
Содержание журнала Достижения науки, техники и культуры
Ссылка на первоисточник статьи: http://elementy.ru/news?newsid=431710.

Расшифрована структура каталитического центра нитрогеназы — фермента, расщепляющего атмосферный азот

Структура одного из самых важных для поддержания жизни на нашей планете биологических катализаторов окончательно расшифрована. Зная структуру FeMoco, химикам будет легче разработать новые технологии промышленной фиксации атмосферного азота — более эффективные и менее энергоемкие, чем процесс Хабера.

Автор: Александр Марков 


Структура железо-молибденового <font class='thesaurus' title='Определение - по щелчку' onclick=show_dic_word('%EA%EE%F4%E0%EA%F2%EE%F0',event)>кофактор</font>а, катализирующего фиксацию атмосферного азота. Изображение из обсуждаемой статьи Spatzal et al. в Science
Структура железо-молибденового кофактора, катализирующего фиксацию атмосферного азота. Серые шарики — атомы железа, желтые — серы, черные — углерода, большой коричневый шарик — атом молибдена. H и C — аминокислоты (гистидин и цистеин), к которым прикрепляется кофактор; 442 и 275 — позиции, в которых находятся эти аминокислоты в молекуле фермента нитрогеназы. Изображение из обсуждаемой статьи Spatzal et al. в Science

После многолетних усилий американским и германским ученым удалось расшифровать структуру «железо-молибденового кофактора», образующего каталитический центр фермента нитрогеназы и играющего ключевую роль в фиксации атмосферного азота. Открытие должно помочь в разработке новых эффективных технологий производства жизненно необходимых человечеству азотных удобрений.

Азотфиксация — важнейший биологический процесс, в ходе которого атмосферный азот (N2) превращается в пригодный для использования живыми организмами аммоний (NH4+). Далеко не все живые существа умеют осуществлять азотфиксацию. Лишь некоторые прокариоты, в том числе цианобактерии, справляются с этой технически очень непростой задачей. Всё живое на Земле до недавних пор существовало исключительно за счет азота, связанного азотфиксирующими микробами (см.: Азот в океане связывается там, где он теряется, «Элементы», 06.02.2007). Лишь недавно на планете появился еще один важный источник связанного азота — производимые человеком искусственные азотные удобрения.

Чтобы разорвать прочную тройную связь в молекуле N2, нужны либо высокие давление и температура, либо невероятно эффективный катализатор. По первому пути идет наша химическая промышленность, производящая аммиак из азота при помощи чрезвычайно энергоемкого «процесса Хабера». По имеющимся оценкам, сегодня около половины всего азота, входящего в состав человеческих тел, — это азот, зафиксированный при помощи процесса Хабера (и попавший сначала в азотные удобрения, синтезируемые из аммиака, а затем в культурные растения).

Азотфиксирующие прокариоты, чьими трудами фиксирована вторая половина азота в наших телах, естественно, избрали второй путь. Они расщепляют азот при помощи специальных ферментов — нитрогеназ, эффективно справляющихся с этой задачей при нормальной температуре и давлении. Неудивительно, что люди с давних пор хотели понять, как устроены нитрогеназы и как они работают.

Для этого оказалось недостаточно расшифровать аминокислотную последовательность нитрогеназы и реконструировать трехмерную структуру белка. Дело в том, что функцию каталитического центра в молекуле нитрогеназы выполняют не аминокислоты, а особый кофактор, состоящий из железа, серы и молибдена. У некоторых прокариот вместо атома молибдена в активном центре нитрогеназы находится атом ванадия или железа, но такие нитрогеназы менее эффективны и хуже изучены.

Железо-молибденовый кофактор (сокращенно FeMoco) — самый большой и сложный из известных на сегодняшний день биологических катализаторов на основе металлов. Этот шедевр биологических нанотехнологий изготавливается специальными ферментами (см. Nif gene) и прикрепляется к белковой основе нитрогеназы. Многие детали синтеза FeMoco до сих пор не выяснены. Именно этот кофактор играет ключевую роль в процессе азотфиксации: к нему присоединяется молекула азота, и здесь же происходит ее расщепление (см.: Эффективная азотфиксация появилась после становления кислородной атмосферы на планете, «Элементы», 25.05.2011). Поэтому для того, чтобы понять принцип работы нитрогеназы, необходимо в первую очередь расшифровать структуру железо-молибденового кофактора.

Это оказалось не так-то просто сделать. В 1992 году, когда была предпринята первая серьезная попытка проникнуть в эту тайну, разрешающая способность методов, имевшихся в распоряжении ученых, оказалась недостаточной, чтобы обнаружить атом, находящийся в самом центре FeMoco (см. левое изображение на рисунке). В 2002 году было показано, что центральный атом существует, но установить его природу еще долго не удавалось. Формулу кофактора с тех пор записывали так: [Mo:7Fe:9S:X], что означает «один атом молибдена, 7 атомов железа, 9 атомов серы и еще один атом неизвестно чего». Это мог быть кислород, углерод или азот, причем последний вариант казался наиболее вероятным (среднее изображение).

Прогресс в расшифровке структуры железо-молибденового <font class='thesaurus' title='Определение - по щелчку' onclick=show_dic_word('%EA%EE%F4%E0%EA%F2%EE%F0',event)>кофактор</font>а. Рисунок из обсуждаемой статьи S. Ramaswamy в Science
Прогресс в расшифровке структуры железо-молибденового кофактора. Красным цветом показаны атомы кислорода, синим — азота, желтым — серы, зеленым — молибдена, оранжевым — железа, голубым — углерода (кроме центрального атома углерода, который показан черным). Рисунок из обсуждаемой статьи S. Ramaswamy в Science

И вот сразу две команды ученых из Германии и США одновременно и независимо друг от друга показали, что в центре кофактора FeMoco на самом деле находится атом углерода (правое изображение). Первый коллектив — тот самый, который в 2002 году предположил, что это азот, — воспользовался для расшифровки структуры кофактора усовершенствованным методом пульсирующего электронного парамагнитного резонанса (см.: Pulsed electron paramagnetic resonance). Второй коллектив пришел к выводу о том, что в центре кофактора находится атом углерода, при помощи рентгеновской эмиссионной спектроскопии (см.: X-ray emission spectroscopy).

Таким образом, почти два десятилетия усилий увенчались успехом: структура одного из самых важных для поддержания жизни на нашей планете биологических катализаторов окончательно расшифрована. Это открытие имеет не только теоретическое, но и практическое значение. Зная структуру FeMoco, химикам будет легче разработать новые технологии промышленной фиксации атмосферного азота — более эффективные и менее энергоемкие, чем процесс Хабера.

Источники:
1) Thomas Spatzal, Müge Aksoyoglu, Limei Zhang, Susana L. A. Andrade, Erik Schleicher, Stefan Weber, Douglas C. Rees, Oliver Einsle. Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor // Science. 2011. V. 334. P. 940.
2) Kyle M. Lancaster, Michael Roemelt, Patrick Ettenhuber, Yilin Hu, Markus W. Ribbe, Frank Neese, Uwe Bergmann, Serena DeBeer. X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor // Science. 2011. V. 334. P. 974–977.
3) S. Ramaswamy. One Atom Makes All the Difference // Science. 2011. V. 334. P. 914–915.

См. также:
1) Эффективная азотфиксация появилась после становления кислородной атмосферы на планете, «Элементы», 25.05.2011.
2) Азот в океане связывается там, где он теряется, «Элементы», 06.02.2007.

 

 


Обсуждение Еще не было обсуждений.


Оценить статью >> пока еще нет оценок, ваша может стать первой :)

   
Архив новостей
Анонсы новостей сайтов-участников    http://www.scorcher.ru/xml/news.rss - что это?
Скромное очарование этологических теорий разумности
О том, как конкретно возможно определять наличие психический явлений у организмов: Скромное очарование этологических теорий разумности.
04-12-2016г.

Субъективные модели действительности
Обзор эволюционного появления субъективных моделей действительности: Субъективные модели действительности.
30-11-2016г.

Словарный запас, используемый в тексте
Словарный запас, используемый в тексте, сколько раз используются слова (по убыванию числа): Статистика слов в тексте
25-11-2016г.

Книга по психологии
Книга по психологии - в поддержку проекта публикации.
30-09-2016г.

От рефлексов к произвольности
Переход рефлекторно сформированного действия в произвольно организованные автоматизмы:
От рефлексов к произвольности.
03-09-2016г.

Психическое явление Интерес или Инициатива наказуема?
Психическое явление Интерес или Инициатива наказуема?
17-08-2016г.

Психическое явление Превосходство
Об адаптивной роли явления превосходства, начиная с базовых механизмов реализации осознанного внимания: Психическое явление Превосходство.
09-08-2016г.

Иллюзия счастья или Стратегическая ошибка сапиенсов
Про уход от реальности или пренебрежение активной адаптивностью: Иллюзия счастья или Стратегическая ошибка сапиенсов
20-06-2016г.

Как правильно выйти замуж
Вопрос: как не продешевить с замужеством - один из актуальных.
Как правильно выйти замуж.
30-05-2016г.

Тестирование личных представлений о системной нейрофизиологии
Самопроверься перед участием в дискуссиях об интеллекте и разуме: Тестирование личных представлений о системной нейрофизиологии.
24-05-2016г.

Активность
Главная
Темы
Показы
Полезное
О сайте
Яндекс.Метрика
 посетителейзаходов
сегодня:22
вчера:33
Всего:278290